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Abstract

Following an improvement for almost a century in the US, life expectancy at birth has
recently edged down, due to the deterioration of mortality rates among certain ages. In-
deed, there has been an increase of mortality in younger ages and a slowdown of mortality
improvement in elder ages.

For (re-)insurance companies which hold exposure on life risks, mortality rates fore-
cast impact their profitability as well as their solvency. Thus appropriate evaluation and
precise understanding of mortality experience are essential. In addition to the analysis of
the historical mortality rates on an aggregate basis, cause-of-death modelling could shed
light on refined understanding of trends among different age groups and genders.

More granular studies are needed to further understand the source of the deteriora-
tion of mortality rates. This thesis attempts to use a cause-of-death view instead of an
aggregate view to model mortality risk, and investigates the suitability of three cause-of-
death modelling approaches under the framework of mortality risk modelling, evaluates
their respective strengths and weaknesses in a practical context, and intends to generate
future mortality scenarios from a cause-of-death view.

After a review of the classical mortality risk modelling approach and an introduction
to the cause-of-death modelling in the first two chapters, this thesis first tests a model
based on independent cause assumption in the third chapter and the fourth chapter intends
to employ an alternative modelling approach - Compositional data analysis techniques to
produce more coherent cause-specific projection and future scenarios of mortality risk.

Keywords: Mortality; Cause-of-Death; Forecast; Mortality risk; Lee-Carter; Compo-
sitional data analysis; Life expectancy
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Résumé

Après une amélioration pendant près d’un siècle, l’espérance de vie aux États-Unis
à la naissance a récemment diminué, en raison de la détérioration des taux de mortalité
pour certaines tranches d’âges. En effet, on constate une augmentation de la mortalité
chez les jeunes et un ralentissement de l’amélioration de la mortalité chez les personnes
âgées.

Pour les compagnies d’assurance et de réassurance qui ont une exposition aux risques
de la vie, les prévisions de taux de mortalité ont un impact sur leur rentabilité et leur
solvabilité. Une évaluation appropriée et une compréhension précise de l’expérience de la
mortalité sont donc essentielles. En plus de l’analyse des taux de mortalité historiques
sur une base agrégée, la modélisation des causes de décès pourrait permettre de mieux
comprendre les tendances parmi les différents groupes d’âge et sexes.

Des études plus granulaires sont nécessaires pour mieux comprendre la source de la
détérioration des taux de mortalité. Ce mémoire utilise une vision par cause de décès
plutôt qu’une vision agrégée pour modéliser le risque de mortalité, et étudie la pertinence
de trois approches de modélisation par causes de décès dans le cadre de la modélisation
du risque de mortalité, évalue leurs forces et faiblesses respectives et propose une méthode
pour générer des scénarios futurs de mortalité.

Après une revue de l’approche classique de la modélisation du risque de mortalité
et une introduction des causes de décès dans les deux premiers chapitres, ce mémoire
teste d’abord un modèle basé sur l’hypothèse des causes indépendantes dans le troisième
chapitre, puis le quatrième chapitre teste une approche de modélisation alternative - les
techniques d’analyse des données de compositions permettant une projection de taux de
mortalité par cause de décès plus cohérente et une génération de scénarios pour le risque
de mortalité.

Mots clés : Mortalité ; Cause du décès ; Prévision ; Risque de mortalité ; Lee-Carter
; Analyse des données compositionnelles ; Espérance de vie
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Executive summary

Mortality in the US

Following an improvement of life expectancy for almost a century in the US, it has been
reported that life expectancy at birth has edged down between 2015 and 2017 according
to the Center of Disease Control and Prevention (CDC). The recent public health crisis
diminished the slight recovery afterwards, and life expectancy dropped down by almost
one year from 2020 to 2021. Put aside Covid-19, the reduction is also explained by various
causes of death.

Objectives

More granular studies are needed to further understand the source of the deterioration of
mortality rates. This thesis attempts to use a cause-of-death view instead of an aggregate
view to model mortality risk. The objectives for each model tested are to:

• Understand the theory and behaviour of each of the different alternatives tested

• Evaluate the advantages and limits, notably the additional value and insights they
provide

• Generate future scenarios to produce prediction intervals in line with the different
trends of each cause-of-death

Framework

Human mortality database (HMD) is the current widely used mortality database in mor-
tality risk modelling. It contains general population aggregate deaths at each age and
year.

There exist two mortality databases which provide general population deaths by
cause-of-death: Human Cause-of-Death database (HCD) and the Center of Disease Con-
trol and Prevention Underlying Cause-of-Death database (CDC). HCD data source is from
National Center for Health Statistics (NCHS), it offers the number of deaths by cause,
age group and year and it has the advantage of stable cause-of-death classification. CDC
data is directly extracted from death certificates in the US, CDC data provides death
numbers of each cause-of-death by single-year age and year. It has more variable choices
such as educational level which allows for studying different sub-populations. This thesis
has retained the CDC data for the cause-of-death analysis, because it provides single-year
age format data and genuine data directly from the death certificates.
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Figure 1: Modelling steps

Figure 1 presents the modelling framework followed in both All-Cause and By-Cause
models. The All-Cause model refers to the classical Lee Carter model applied to the
general population. All-Cause model is calibrated using HMD data and By-Cause models
are calibrated on CDC. Models are calibrated from the data, used to forecast and generate
scenarios.

Table 1 summarizes the three cause-of-death modelling approaches considered in this
thesis. The first model tested emphasizes the individual dynamics laid in each cause which
is modelled independently. The second and third model provide an alternative approach
and tend to elaborate on the dependence between causes.

Table 1: Model comparison

Model name Modelling approach Advantages Limits
Independent cause-
specific model

Model each cause-of-
death independently

Easy implementa-
tion and emphasize
on individual cause
characteristics

Unrealistic long-term
forecast of aggregate
mortality rates

CoDa Common Trend - Pre-determine aggre-
gate mortality rates
forecast as constraint
- Model each cause’s
proportion
- Assume a common
trend for every cause

- Coherence of cause-
specific forecast with
respect to aggregate
mortality rates.
- Explanatory ability
- Risk transfer between
cause-of-death and
ages

- Long term forecast
predicting dominance
(over 70%) of Drug-
related cause
- Common Trend for
each cause

CoDa Multi Trend - Pre-determine aggre-
gate mortality rates
forecast as constraint
- Model each cause’s
proportion
- Assume an individual
trend for every cause

- Coherence of cause-
specific forecast with
respect to aggregate
mortality rates.
- Explanatory ability
- Specific trend evolu-
tion for each cause
- Risk transfer between
cause-of-death and
ages

Long term forecast
predicting dominance
(over 70%) of Drug-
related cause
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Independent cause-specific model
The first modelling approach of this thesis is based on the main assumption that cause-
specific central trajectories are independent. This assumption emphasizes the individual
dynamics of each cause. Each cause’s mortality rate is modelled by a classical Poisson
log-bilinear model and the aggregate level mortality rate is expressed as the sum of cause-
specific mortality rates. Prior to the modelling parts, historical cause-specific evolution

Figure 2: Aggregated and Drug-related
log-mortality rates for male aged 20

Figure 3: Aggregated and Alzheimer-
Dementia log-mortality rates for female
aged 80

and distribution among different ages are reviewed. Figure 2 and Figure 3 illustrate
respectively the aggregate and Drug-related mortality rates evolution for a male aged
20, and mortality rates evolution for a female aged 80. It can be observed that the
general population has a slightly declining trend while the specific causes show an opposite
increasing trend.

Figure 4: κt,i for male and female

Figure 4 shows the trend parameter κt,i of these two causes and All-cause model,
which confirms the observation above: the aggregate mortality level deviation from the
historical trend among the young and elder ages may be mainly conducted by the causes
listed above.

The forecast is accomplished by extrapolation of the time index under the indepen-
dent cause-specific assumption, therefore the historical trend of each cause is assumed
to continue in the future. With 20 years of forecast, Figure 5 shows the residual life
expectancy output by All-Cause and By-cause model. Life expectancy at birth for male
and female will decline by two years in 20 years as per the model forecast, suggesting a
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pessimistic forecast, even an unrealistic, especially regarding life expectancy at birth from
this model.

Figure 5: All-Cause and By-cause residual life expectancy at birth and 60

Figure 6 illustrates mortality rates forecast when the forecast horizon is extended
to 60 years. In 60 years, if recent trend of each cause persists, mortality rates will at
least double the classical All-Cause model forecast for all ages. This is mainly due to
the linear extrapolation techniques used on each cause as it will follow independently
its historical trend during the whole forecast horizon. Figure 7 shows the aggregate and
Drug-related mortality rates forecast for a male at age 30, it could be seen that the cause
Drug-related will become dominant in mortality rates, leading to unrealistic forecast.
The underlying modelling approach could therefore be reviewed and contested by having
ignored dependence between causes in the central trajectory.

Figure 6: All-Cause and By-cause male
mortality rates forecast for 60 years

Figure 7: Aggregated and Drug-related
log-mortality rates forecast for male
aged 30
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Compositional data analysis model
Given the unrealistic forecast of mortality rates resulting from the first model, additional
constraints could be necessary to limit specific causes’ trends, and ensure more coherent
aggregate mortality rates. This chapter analyzes an alternative approach. Compositional
Lee-Carter model is employed by shifting the target variable from absolute cause-specific
mortality rates to the proportions of each cause in the future given historical evolution. A
transformation (clr) is necessary to convert the proportions dx,t,i at age x, year t and cause
i, which belong to a simplex, into numbers of a real space, allowing the application of
broader statistical techniques. The Compositional Lee-Carter model could be expressed
as below:

clr(dx,t,i ⊖ αx,i) = βx,iκt + ϵx,t,i (1)

Where the βx,i and κt have different interpretations with the classical All-Cause Lee-Carter
model.

βx,i measures the age-and cause-specific sensitivity to trend factor κt, it describes
the gain (or loss) of deaths for an age and a cause in relative terms. A positive βx,i for
cause i associated with a positive κt means the cause i gains relatively more proportions
compared to other causes.

An important mechanism and adding value of the CoDa framework is the concept
of risk transfer, the reduction of the mortality risk in a cause or at an age will result in
the increase in other causes or ages. The second part of this thesis investigates this
alternative approach, the compositional Lee-Carter model could be further divided into
two sub-models: Common Trend and Multi Trend with respect to the trend factor of
cause. Common Trend model suggests a unique trend factor shared by each cause while
Multi Trend allows for each cause a specific trend.

For these models, a constraint is defined on the aggregate mortality rates, which are
predetermined by age and by year. Figure 8 illustrates the cause-specific forecast for a
male at age 40, the forecast is more coherent with respect to aggregate mortality rates.

To generate scenarios from the central trajectories, the thesis proposes to:

• First, simulate different κt trajectories for the Common Trend model, and to simu-
late trajectories from a gaussian copula using the correlation matrix of trend resid-
uals ϵt,i for the Multi Trend model.

• Calculate the resulting forecasted proportions for each cause-of-death.

• Calculate the resulting aggregate and by cause mortality rates.

This thesis notably proposes a method for the final step described above to convert the
forecasted proportions by cause-of-death, age and year into absolute mortality rates, for
a scenario different from the central trajectory. This is done by comparing the sum of
transformed values in the inverse transformation operator C(exp(Y)) between a given
scenario and the central trajectory.

C(exp(Y )) = [
exp(Yx,t,i)∑
exp(Yx,t,i)

, ...,
exp(Yx,t,j)∑
exp(Yx,t,i)

]

where Y represent the clr-transformed matrix.
An indicator I is defined as below Ix,t =

∑
exp(Y scenario

x,t,i )∑
exp(Y initial

x,t,i )
which represents the relative

change of aggregate mortality rates for a male or female at age x and year t, which will
be multiplied by the pre-determined aggregate mortality rates.
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Figure 8: CoDa model male aged 40 mortality rates forecast for 60 years

Figure 9: Male cohort expected age at death interval

Then, the life expectancy deviations have been investigated. By looking at the ex-
pected age at death (attained age + life expectancy) at 0.5% and 99.5% levels presented
in Figure 9, it can be observed that the results from All-Cause and CoDa models dif-
fer, the interval for CoDa Common Trend is notably narrower than the interval for the
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All-Cause model. This could be partially explained by some lower resulting volatility of
CoDa Common Trend’s trend component.

As a last step, the scenario that corresponds to the 0.5% of expected age at death has
been further analysed. Indeed, each forecasted scenario can be investigated on a cause-
of-death granular level, providing an explanation of the cause proportion evolution, and
insights to understand the sources of life expectancy decline.

Conclusion
This thesis has analysed three different cause-of-death modelling approaches: independent
cause-specific; CoDa Common Trend and CoDa Multi Trend. CoDa models provide
coherent mortality rates and interesting insights when analysing scenarios.

Figure 10: Best-estimate and Expected age at death at 0.5% level scenario of female
cohort aged 20 in 2020

However, despite the more coherent forecast provided by CoDa models, it has been
observed in the long-term forecast, certain causes such as Drug-related could still become
dominant in proportions as displayed in Figure 10, Drug-related would occupy over 70%
of forecasted mortality rates for the female cohort aged 20 in 2020 before 2070.

Therefore, the analysis should be further deepened by considering expert judgments,
which could be applied to each cause-of-death to limit their evolution on a more rational
scale. Some fundamental issues related to cause-of-death modelling remain to be solved
as well, such as data quality following the change of classification standard.

In conclusion, the application of cause-of-death modelling is deemed to be premature
without further adjustment and additional analysis for the mortality risk assessment.
However, it can provide valuable insights of mortality trends and their evolution, detect
the main drivers of aggregated mortality risk and explain extreme scenarios.
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Note de synthèse

Mortalité aux États-Unis
Après une amélioration de l’espérance de vie pendant près d’un siècle aux États-Unis, on
observe une baisse de l’espérance de vie à la naissance entre 2015 et 2017 selon le Center
of Disease Control and Prevention (CDC). La récente amélioration de l’espérance de vie
a été notamment entravée par la récente crise pandémique, ce qui a entrainé une chute
de près d’un an en terme d’espérance de vie entre 2020 et 2021. En réalité, la récente
détéoriation est également expliquée par d’autres causes de décès différentes du Covid-19.

Objectifs
Des études plus granulaires sont nécessaires pour mieux comprendre la source de la détéri-
oration des taux de mortalité. Ce mémoire utilise une vision par cause de décès plutôt
qu’une vision agrégée pour modéliser le risque de mortalité. Les objectifs de chaque
modèle testé sont les suivants :

• Comprendre la théorie et le comportement de chacune des différentes alternatives
testées.

• Evaluer les avantages et les limites, et notamment la valeur ajoutée et les perspec-
tives qu’ils apportent.

• Générer des scénarios futurs pour produire des intervalles de projection en fonction
des différentes tendances de chaque cause de décès.

Cadre de modélisation
La base de donnée utilisée classiquement pour la modélisation du risque de mortalité aux
Etats Unis est la base Human Mortality Database (HMD). Elle contient les décès (toutes
causes confondues) de la population générale pour chaque âge et chaque année.

Il existe deux bases de données de mortalité qui fournissent les décès de la population
générale par cause de décès : Human Cause-of-Death Database (HCD) et la base de
données du Center of Disease Control and Prevention (CDC). La base de donnée HCD
provient de l’organisme National Center for Health Statistics (NCHS). Elle contient le
nombre de décès par cause, par groupe d’âge et par année, et présente l’avantage d’une
stabilité de la classification des causes de décès. D’autre part, la base CDC est issue
directement des certificats de décès aux Etats Unis. Les données du CDC fournissent
le nombre de décès pour chaque cause par âge et par année, elles proposent d’autres
variables comme les niveaux d’éducation, permettant des analyses plus fines par type de
population. La base de données CDC a été choisie pour cette étude car elles fournissent
des données par âge, et des données authentiques à partir des certificats de décès.

La Figure 11 présente le cadre de modélisation suivi dans les modèles All-Cause et
By-Cause. Le modèle All-Cause fait référence au modèle classique toutes causes de Lee

13



14

Figure 11: Les étapes de modélisation

Carter appliqué à la population générale. Le modèle All-Cause est calibré à l’aide de
la base HMD alors que les modèles By-Cause sont calibrés via la base CDC. Une fois
calibrés, les modèles sont utilisés pour projeter dans le futur et également générer des
scénarios.

La Table 2 résume les trois approches de modélisation par cause de décès considérées
dans ce mémoire. Le premier modèle testé met l’accent sur la dynamique individuelle
de chaque cause qui est modélisée de manière indépendante. Les deuxième et troisième
modèles fournissent une approche alternative et élaborent une dépendance entre les causes.

Table 2: Comparaison des modèles

Nom du modèle Approche de mod-
élisation

Avantages Limites

Modèle avec hypothèse
d’indépendance

Modélisation indépen-
dante de chaque cause
de décès

Mise en œuvre facile et
accent mis sur les car-
actéristiques des causes
individuelles

Projection à long terme
irréaliste des taux de
mortalité agrégés

CoDa Common Trend
(tendance commune)

- Pré-détermination de
la projection des taux
de mortalité agrégés
comme contrainte
- Modélisation de la
proportion de chaque
cause
- Hypothèse d’une ten-
dance commune pour
chaque cause

- Projection des taux
de mortalité par cause
en ligne avec le taux de
mortalité agrégé
- Capacité explicative
- Transfert de risque
entre la cause de décès
et les âges

- Risque de projection
long terme avec une
domination (>70%)
d’une cause spécifique
(comme la drogue)
- Tendance commune
pour chaque cause

CoDa Multi Trend
(tendances multiples)

- Pré-détermination
des taux de mortalité
agrégés prévus comme
contrainte
- Modélisation de la
proportion de chaque
cause
- Hypothèse d’une
tendance individuelle
pour chaque cause

- Projection des taux
de mortalité par cause
en ligne avec le taux de
mortalité agrégé
- Capacité explicative
- Evolution de la
tendance spécifique à
chaque cause
- Transfert de risque
entre la cause de décès
et les âges

Risque de projection
long terme avec une
domination (>70%)
d’une cause spécifique
(comme la drogue)
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Modèle avec hypothèse d’indépendance

La première approche de modélisation de ce mémoire est basée sur l’hypothèse principale
que les trajectoires centrales de chaque cause sont indépendantes. Le taux de mortalité
de chaque cause est modélisé par un modèle classique de Poisson log-bilinéaire et le taux
de mortalité au niveau agrégé est exprimé comme la somme de ces taux de mortalité.

L’évolution historique est d’abord analysée. La Figure 12 et la Figure 13 illustrent
respectivement l’évolution des taux de mortalité agrégés, les taux de la cause Drug-related
pour un homme de 20 ans et Alzheimer-Dementia pour une femme de 80 ans. On observe
que ces causes spécifiques présentent une tendance à la hausse alors que la population
générale présente une légère tendance à la baisse.

Figure 12: Taux de mortalité agrégés et
de Drug-related pour un homme à l’âge
20

Figure 13: Taux de mortalité agrégés et
de Alzheimer-Dementia pour une femme
à l’âge 80

La Figure 14 montre le paramètre de tendance κt,i du modèle Poisson log-bilinéaire,
pour ces deux causes et celui du modèle toutes causes. Les fortes pentes observées pour
ces deux causes pourraient expliquer les tendances haussières dans les graphes ci-dessus.

Figure 14: κt,i de l’homme et de la femme

Dans le cadre de l’hypothèse d’indépendance des causes, la tendance historique de
chaque cause est supposée se poursuivre selon une extrapolation de l’indice temporel.
Avec 20 ans de projection, la Figure 15 montre les espérances de vie résiduelles pour le
modèle toutes causes et par cause. L’espérance de vie à la naissance pour les hommes et
les femmes diminueraient de deux ans dans 20 ans selon la projection du modèle, ce qui
suggère une projection pessimiste pour l’espérance de vie à 60 ans, même irréaliste pour
l’espérance de vie à la naissance.
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Figure 15: L’Espérance de vie résiduelle à la naissance et à l’âge 60 du modèle toutes
causes et par cause.

La Figure 16 illustre les taux de mortalité projetés lorsque l’horizon de projection
est étendu à 60 ans. Dans 60 ans, si la tendance observée actuellement pour chaque
cause persiste, les taux de mortalité devraient au moins doubler par rapport aux projec-
tions du modèle classique pour tous les âges. Ceci est dû en premier lieu aux techniques
d’extrapolation linéaire utilisées pour chaque cause, chaque cause suivant indépendam-
ment sa tendance historique durant tout l’horizon de projection. La Figure 17 montre les
projections de taux de mortalité agrégés et Drug-related pour un homme âgé de 30 ans, la
cause Drug-related deviendrait dominante en absolu, entraînant des projections de taux
de mortalité irréalistes. Suite à cette analyse, l’hypothèse d’indépendance utilisée par ce
premier modèle peut donc être contestée.

Figure 16: Projection à 60 ans du mod-
èle toutes causes et par cause

Figure 17: Projection du taux de mor-
talité agrégé et de Drug-related pour un
homme de 30 ans

Modèle d’analyse des données de compositions

Compte tenu de la projection irréaliste des taux de mortalité résultant du premier mod-
èle, certaines contraintes supplémentaires pourraient être nécessaires pour limiter les ten-
dances des causes spécifiques et assurer des taux de mortalité agrégés plus cohérents.
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Ce chapitre analyse une approche alternative. Le modèle de Lee-Carter de compositions
est utilisé en changeant la variable cible des taux de mortalité absolus par cause en des
proportions par cause compte tenu de l’évolution historique.

Une transformation (clr) est nécessaire pour convertir les proportions dx,t,i à l’âge x,
l’année t et la cause i, permettant de passer d’un espace de simplex vers un espace réel et
l’application de techniques statistiques. Le modèle de composition de Lee-Carter pourrait
être exprimé comme suit :

clr(dx,t,i ⊖ αx,i) = βx,iκt + ϵx,t,i (2)

Où les βx,i et κt ont des interprétations différentes avec le modèle classique de Lee-Carter.
βx,i mesure la sensibilité par âge et par cause au facteur de tendance κt, il décrit le

gain (ou la perte) de décès pour un âge et une cause en termes relatifs. Un βx,i positif
pour la cause i associé à un κt positif signifie que la cause i gagne relativement plus de
proportions par rapport aux autres causes.

Un mécanisme important d’un modèle de compositions (CoDa) est le concept de
transfert de risque, la réduction du risque de mortalité dans une cause ou à un âge donné
entraîne une augmentation dans d’autres causes ou à d’autres âges.

Figure 18: Projection par cause de décès à 60 ans des modèles de CoDa pour un homme
de 40 ans
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La deuxième partie de ce mémoire étudie cette approche alternative: le modèle Lee-
Carter de compositions. Deux sous-modèles sont définis: Common Trend (CT ou tendance
commune) et Multi Trend (MT ou tendance multiple). Le modèle Common Trend suggère
un facteur de tendance unique partagé par chaque cause tandis que le modèle Multi Trend
permet à chaque cause d’avoir une tendance spécifique.

Pour ces modèles, une contrainte est définie sur les taux de mortalité agrégés qui
sont prédéterminés par âge et par année. La Figure 18 illustre les projections par cause
de décès pour un homme de 40 ans, on observe que les projections sont plus cohérentes
en ligne avec les taux de mortalité agrégés.

Pour générer des scénarios à partir des trajectoires centrales, ce mémoire propose de:

• Tout d’abord, simuler différentes trajectoires κt pour le modèle Common Trend et
de simuler des trajectoires à partir d’une copule gaussienne en utilisant la matrice
de corrélation des résidus de tendance ϵt,i pour le modèle Multi Trend

• Calculer les projections des proportions futures pour chaque cause de décès
• Calculez les taux de mortalité agrégés et par cause qui en résultent

Ce mémoire propose notamment une méthode pour l’étape finale décrite ci-dessus afin de
convertir les proportions futures par cause de décès en taux de mortalités pour un scénario
différent de la trajectoire centrale. Cette conversion s’effectue en comparant la somme
des valeurs transformées dans l’opérateur de transformation inverse C(exp(Y)) entre un
scénario donné et la trajectoire centrale.

C(exp(Y )) = [
exp(Yx,t,i)∑
exp(Yx,t,i)

, ...,
exp(Yx,t,j)∑
exp(Yx,t,i)

]

où Y représente la matrice des valeurs transformées.
Un indicateur I est défini comme suit : Ix,t =

∑
exp(Y scenario

x,t,i )∑
exp(Y initial

x,t,i )
qui représente la variation

relative des taux de mortalité agrégés en pourcentage et qui sera multiplié par les taux
de mortalité agrégés prédéterminés.

Figure 19: L’interval de l’âge attendu du mort du cohort pour l’homme
Ensuite, les écarts d’espérance de vie ont été étudiés. En examinant l’âge attendu au

décès (âge atteint + espérance de vie) à des niveaux de 0,5% et 99,5% présentés dans la
Figure 19, on peut observer que les résultats des modèles toutes causes et ceux des CoDa
diffèrent, l’intervalle pour le modèle toute cause est plus étroit que celui du CoDa Common
Trend. Cela pourrait s’expliquer en partie par une volatilité résultante plus faible de la
composante de tendance κt issu du modèle de CoDa Common Trend par rapport à celui
du modèle toutes causes.
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Chaque scénario simulé peut enfin être analysé au niveau granulaire des causes de
décès, ce qui permet d’expliquer l’évolution de la proportion des causes et de comprendre
les sources du déclin de l’espérance de vie.

Conclusion
Ce mémoire a analysé trois approches différentes de modélisation des causes de décès:
Modèle avec hypothèse d’indépendance, CoDa Common Trend (tendance commune),
CoDa Multi Trend (tendance multiple). Les modèles de CoDa fournissent des taux de
mortalité cohérents et des explications intéressantes lors de l’analyse des scénarios.

Cependant, malgré les projections plus cohérentes fournies par les modèles de CoDa,
on observe que, dans les projections à horizon long terme, certaines causes telles que
Drug-related pourraient devenir dominantes en termes de proportions, comme le montre
la Figure 20 où la cause Drug related occuperait plus de 70% des taux de mortalités pour
la cohorte femme âgée de 20 ans en 2020 jusqu’en 2070.

Figure 20: L’âge attendu du décès pour la trajectoire centrale et pour le scénario 0.5%
pour une femme de 20 ans en 2020

Par conséquent, l’analyse devrait être approfondie en tenant compte des jugements
d’experts, qui pourraient être appliqués à chaque cause de décès pour limiter leur évolution
à une échelle plus rationnelle. Certains problèmes fondamentaux liés à la modélisation
des causes de décès restent également à résoudre, comme la qualité des données suite au
changement de norme de classification.

En conclusion, l’application de la modélisation des causes de décès est jugée pré-
maturée sans ajustement supplémentaire et dans le cadre de l’évaluation interne du risque
de mortalité. Cependant, elle permet de fournir des informations précieuses sur les ten-
dances et sur l’évolution de la mortalité, de détecter les principaux facteurs du risque de
mortalité et d’analyser des scénarios extrêmes.
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Introduction

Mortality rates has always been the focus of life insurance as well as demographic re-
searcher. For pension funds and government, an accurate mortality rates prediction im-
pact the decision making regarding various social issues such as retirement policy reform;
social resources allocation. As for life insurance companies, mortality rates provide a solid
guideline for both policy pricing and risk management, notably compliance with Solvency
II regulation, which requires strict quantitative risk assessment aiming to deduce ade-
quate Solvency Capital Requirement (SCR). According to Solvency regulation in force,
two options are available for European(re-)insurance companies to evaluate their capital
in Pillar I, either a standard formula along with the regulation or an internal model de-
veloped by the insurer, which proposes numerous advantages especially accuracy on the
real risk encountered by the insurer.

Hence, mortality modelling is vital for an insurance company with regard to its
profitability and risk resilience capacity although current modelling practice based on
All-Cause information could be further refined with respect to cause-specific experiences
among both young and old ages.

The common practice of the mortality modelling is to consider 3 dimensions of vari-
ability: Gender; Age and Temporality. In light of the current situation, a cause-of-death
modelling approach could be insightful to capture the uncertainty within the mortality
evolution in a more granular way. Cause-of-death approach reckons with the source of
death as well as its development. This report aims to apply this modelling approach and
compare it firstly with the common practice classic mortality forecast and subsequently
evaluate each cause-of-death model’s suitability in a mortality risk framework, and their
own advantages and limits. This analysis is performed on the US general population, the
result could differ according to each insurer’s portfolio.

This thesis will start by reviewing regulation on mortality risk and cause-of-death
definitions in the first chapters. Third chapter aims to apply a model based on independent
cause assumption as a first tentative, each cause is modelled and forecasted independently,
the aggregation is realized by summing the forecast of each cause. The fourth chapter
will explore compositional data analysis techniques on cause-of-death modelling in order
to further emphasize the dependence structure between causes and provide more coherent
cause-specific forecast.
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Chapter 1

Study context

This chapter introduces the background and motivation of this thesis regarding mortality
risk modelling.

1.1 Reinsurance

Reinsurance could be directly interpreted as insurance of insurance, according to the
type of insurance purchased by the cedant (primary insurer), the reinsurance company
accepts part or total of the risks encountered by an insurance company in exchange for
reinsurance premiums. Insurance companies could benefit from this mechanism of risk
transfer to avoid large exposure to an unforeseen event which leads to massive claims,
and in the meantime obtain more underwriting capacity without damaging their solvency.
Reinsurance company, on the other hand, ends up with a more diversified portfolio which
mitigates its own risk as well. If a reinsurance company estimates that the total risk ceded
in its portfolio may surpass its capacity, the ceded risk could be further shared with other
reinsurance companies with retrocessions. There are mainly two types of reinsurance:
proportional and non-proportional.

Proportional reinsurance

The part of risk transferred to the reinsurance company is equal to the proportion of
ceded premiums. The determination of the proportion could be done in two types:

Quote-share (QS): cedant and reinsurance company mutually agree on a fixed unique
rate for each policy.

Surplus-share: cedant retains a limit of the proportion of losses (retention) and trans-
fers the excess of proportions to the reinsurance company.

Non-proportional reinsurance

Non-proportional reinsurance is mainly executed in two forms: excess of loss and stop-loss.
Excess of loss indicates a lower and upper threshold of claims, cedant retains the part

below the lower threshold and above the upper threshold. The rest is taken charge by the
reinsurance company.

Stop-loss reckons with the annual result of cedant, reinsurance company takes over
the part of loss above the pre-negotiated limit.

Non-proportional reinsurance is mainly used in event-based policies such as natural
catastrophe claims.
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1.2 Regulation landscape

1.2.1 Solvency II framework

The solvency of (re-)insurance companies is defined as the ability to meet their short,
medium and long-term commitments to their clients. It depends on the size of these
commitments, including the guarantees and protection offered to the (re-)insured, and
the resources available to the (re-) insurance company to meet them (equity and assets
held).

With the purpose of enhancing risk resilience and unifying solvency regulation across
European (re-)insurance companies. Solvency II came into effect in January 2016 and
could be characterized by 4 features:

• Market consistent: valuation methodologies should be based on the exchangeable
value in the market.

• Risk-based: Capital requirement in consistence with the risks hold in the portfolio,
higher risks undertaken by (re-)insurance companies require higher capital require-
ment.

• Proportionate: Appropriate regulatory conditions corresponding to the nature, scale
and complexity of the risks inherent in the insurance and reinsurance business.

• Group supervision: Supervisors should strengthen the internal coordination and
information exchange of the Supervisory Committee.

Based on the characteristics and objectives mentioned above, Solvency II executes
mainly through a structure of 3 pillars:

Figure 1.1: Pillar I
Source: Institute and Faculty of Actuaries 2016

Pillar I requires each (re-) insurer to appropriately quantify their technical provisions
valuation with reliable specific methodologies, which result in Minimum Capital Require-
ment (MCR) and Solvency Capital Requirement (SCR). MCR and SCR are both capital
requirements above the technical provisions. MCR is the requirement of a minimum cap-
ital level that (re-)insurance companies should hold and is regularly supervised by the
regulatory authority. SCR corresponds to the Value-at-Risk at 99.5% of future compa-
nies’ own funds, which limits the probability that (re-)insurance companies can’t meet
their obligations towards policyholders under 0.5% and mitigate the risk of financial ruin
in one year.

Pillar II imposes qualitative conditions on each (re-)insurer’s risk management unit,
which is realized by the Own Risk and Solvency Assessment (ORSA), to identify types of



1.2. REGULATION LANDSCAPE 29

risk to which (re-insurance) companies are exposed and oversight ongoing risk manage-
ment process and controls

Pillar III consists of a risk reporting system according to which risk assessment shall
be reported to regulators and the public.

Figure 1.2: Solvency II review in 2020
Source:European commission

It should be noted that Solvency II, despite that it has come into effect, still has been
through several revisions and updates in order to ensure its stability regarding its objec-
tives. EIOPA (the European Insurance and Occupational Pensions Authority) accordingly
produced corresponding technical support and advice. The most recent review took place
in 2020 and EIOPA is of opinion that no major changes in Solvency II framework are
needed, Figure 1.2 shows the three areas of improvement provided by EIOPA.

Regular reviews of Solvency II also provide aspects to (re-)insurance companies to
adapt their own risk assessment methodologies with regard to the slowing economic
growth, and uncertainties regarding market conditions which are intensified by the Covid-
19 pandemic.

1.2.2 Standard formula

As in pillar I of the Solvency II directive, risk assessment and quantification may be
accomplished by a standard formula, which prescribes the stress tests or methodology of
aggregation techniques. Figure 1.3 indicates the structure of SCR under the standard
formula. The basic SCR is calculated in each individual module.

The SCR is composed of three components: Basic SCR; Operational risk and Ad-
justment. Basic SCR is further divided into different modules: market (interest rate;
credit spread; currency etc); counterparty default; intangible assets and insurance risks
(including Health, Life and Non-life risks). Among these, life underwriting risk includes
biometric risks, which may cause (re-)insurance companies large claims due to human
life conditions (death, disability, birth etc), it includes mortality risk; longevity risk and
disability/morbidity risk.

Mortality risk refers to the risk that the actual payments arising from policyholder
deaths, during the term of the cover, exceed the expected payments as a result of mortality
experience being higher than expected. This risk is defined in the standard formula as a
permanent 15% increase in mortality rates. Apart from biometric risks, lapse, expenses,
revision and catastrophe risk are also included in the calculation of life module basic SCR.

The basic SCR of each individual risk is calculated as the difference between the
central scenario balance sheet and the stressed balance sheet, which is further combined
within each module. Having obtained the basic SCR for each module, they are aggregated
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Figure 1.3: Solvency capital requirement branch
Source: Institute and Faculty of Actuaries2016

using a specific correlation matrix at different levels

SCRLife =

√∑
i,j

ρi,j × SCRi × SCRj

ρi,j represents the correlation between two individual risks

BSCR =

√∑
I,J

ρI,J × SCRI × SCRJ

ρI,J represents the correlation between two modules

In the end, basic SCR is completed by an allowance to operational risk and an
adjustment regarding the loss-absorbing capacity. Adj corresponds to the adjustment for
loss-absorbing capacity of technical provisions and deferred taxes, which are not taken
into account in the BSCR. Operational risk refers to the loss risk due to the internal
procedure, inadequate systems or external events.

Standard formula possesses advantages, it is less costly and easy to implement. Al-
though it doesn’t provide a customized view of risks encountered by each (re-)insurance
company. Furthermore as mentioned before, regular reviews of Solvency II motivates
(re-)insurance companies to adapt their risk assessment as well. Therefore an alternative
approach accentuating (re-)insurance companies’ own risk profile may be insightful.

1.2.3 Internal model

Each (re-)insurance company possesses a different risk profile, (re-) insurance companies
have the right to develop its own internal model under the approval of its supervisory
authority. The advantage of internal model is that it sheds light on each (re-)insurance
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company’s individual characteristics. The use of internal model is required to meet several
standards such as

• Use test: proof of internal model impacts on company decision making and gover-
nance process

• Statistical soundness: minimum statistical standards must be met, as well as justi-
fication of methodology: expert judgement and aggregation method etc. Use test
is vital for a (re-) insurance company to receive approval on the use of its internal
model.

• Calibration standard: analysis of whether the SCR correspond to 1-200 scenario

• Profit & loss distribution: justify real profit of loss by the categorisation of risk
chosen in the internal model

• Validation: Regular review and validation

The use of an internal model may also be subject to issues such as data quality and
assumptions such as the determination of the calibration period, the choice of calibration
period may limit the understanding of extreme events due to the length of data or the
volatility cluster as in the financial market.

The advantage of the use of the internal model is to assess appropriately each (re-
)insurance company’s risk profile, which is also an aspect urged by regulatory authorities
on capturing correctly the exposure, allowing for more flexibility on its own funds and
gaining more precision on the risk modelling. According to PwC [2019], between 2017 and
2018, internal models helped (re-)insurers to reduce on average 8.7% of SCR compared
to the Standard formula.

Internal models commonly use simulation methods such as Monte-Carlo to project
(re-)insurance companies’ future profit and loss distribution, which consists of simulating
future possible scenarios of each individual risk and then aggregating them according to
their aggregation techniques.

1.3 Mortality evolution in US
Mortality rates have been through a rapid improvement since World War II, as well as
life expectancy which measures the average life that an individual at an attained age
expects to live. Life expectancy at birth in the US raised from 68.2 to 78.7 all races
and genders included according to Elizabeth Arias and Ahmad [2022], this improvement
mainly benefits from medical advances and a relatively stable environment. Nonetheless,
it has come to public attention that US life expectancy at birth declined for the first time
in two decades in 2015 and subsequently in 2016 and 2017. Despite a slight recovery
until 2019, the public health crisis COVID-19 brings life expectancy to its lowest level
since 1996, which explained 50% of the decline between 2020 and 2021, along with other
major causes such as unintentional injuries and heart diseases. The impact would’ve
been greater without the compensation from the reduction of Influenza; Alzheimer and
perinatal conditions.

Figure 1.4 illustrates the mortality rate evolution of a male aged 30 in the US from
1933 to 2019. Similarly to life expectancy, mortality rates demonstrate more uncertainty
among the young and middle ages, National Academies of Sciences et al. [2021] states
that the distortion among the working-age group is mainly due to drug overdose; suicide
and cardio-metabolic diseases. It also has been established that the gap in life expectancy
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Figure 1.4: US 30-year-old male logarithm mortality rates between 1933 and 2019.
Data source: Human Mortality Database (HMD)

induced by socioeconomic factors has been expanding according to Brown and McDaid
[2003] and National Academies of Sciences and Medicine [2015], mainly due to education
level and income.

The above issues reveal the major factor behind the apparent phenomenon could be
better understood through cause-of-death analysis, an aggregate level mortality improve-
ment potentially concealed the underlying cause-specific evolution.



Chapter 2

Mortality modelling approach

This chapter aims to introduce basic concepts related to mortality quantification and the
modelling approach commonly practised in both the research and the insurance industry.

2.1 Mortality notations

Before tackling the modelling approach to mortality, several mortality topic-related nota-
tions ought to be clarified. By denoting individual lifetime as T and residual lifetime as
Tx, survival and mortality probability could be defined:

tpx = P (Tx > t) = P (T > x+ t|T > x)

tqx = P (Tx ≤ t) = P (T ≤ x+ t|T > x)

Another notion of mortality force µx+t, which measures the instantaneous conditional
death probability, is deduced directly from the definition above and could be related to
mortality rate, as per definition:

µx+t = lim
h→0

h−1P (t < Tx ≤ t+ h|Tx > t) =
1

tpx
∗ ∂tqx

∂t

A central mortality rate between x and x+ 1 could be calculated as below:

mx =
dx
nx

where dx represents the number of deaths within a 12-month period and nx quantity of
exposures defined as the average number of populations at age x between the beginning
and end of the 12 months, this mortality rate could be easily calculated according to the
chosen mortality database such Human Mortality Database (HMD).

µx is therefore linked with mx, µx = limh→0mx and the mortality probability could
be consequently written and approximated as:

tqx = 1− exp(−
∫ t

0

µx+s ds) =
µx

1 + 0.5µx

Life expectancy

Complete life expectancy at age x could be expressed as ėx = E(Tx) =
∫∞
0 tpxdt. Curtate

life expectancy ex is the expectation of discrete random variable Kx which is the integer
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part of Tx, it represents the complete years of life count.

ex = E(Kx) =
∞∑
k=1

kpx

ėx ≈ ex + 0.5

Life expectancy may be calculated from two types of life tables:
Period life table or cohort table. The period table calculates the mortality rates from

a single year and assumes that for the rest of life, the mortality rates will remain the
same. The period of life expectancy could be expressed as :

kp
Period
x = px(t)× px+1(t)× px+2(t)× ...× px+k(t)

ėPeriod
x = E(Kx) =

∞∑
k=1

kp
Period
x + 0.5

The cohort life table provides the death rates of a virtual cohort, it takes into account
the mortality improvements in the future, therefore the survival probabilities used in the
cohort life expectancy for an individual aged 20 in 2020 will be the survival probabilities
of age 21 in 2021, age 22 in 2022 ..... age 60 in 2060 etc, thus the resulting life expectancy
is:

kp
Cohort
x = px(t)× px+1(t+ 1)× px+2(t+ 2)× ...× px+k(t+ k)

ėCohort
x = E(Kx) =

∞∑
k=1

kp
Cohort
x + 0.5

2.2 Stochastic mortality model

2.2.1 Lee-Carter

Lee-Carter model is a widely used mortality stochastic model in both industry and re-
search fields, first introduced by Lee and Carter [1992]. It models two dimensions of
mortality: age and time through three terms: αx indicates a static age structure, κt cap-
tures the time dynamics notably the trend of mortality, βx an interaction term between
age and time dynamics measures the sensitivity of each age towards the general trend,
each age undergoes different mortality evolution in terms of sign and magnitude.

lnµx,t = αx + βxκt + ϵx,t

With constraint
∑

t κt = 0 and
∑

x βx = 1,the parameter estimation initially pre-
sented in Lee and Carter [1992] is accomplished by singular value decomposition (SVD).
Given a matrix of logarithms of mortality rates with dimension N ages x T years, the
matrix is initially extracted by its age-specific rates αx and the rest is decomposed by
SVD:

Zx,t = (ln(µx,t)− αx)

Zx,t =
T∑
i

ρiUx,iVi,t
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with T as the total number of ranks and Ux,iand Vi,t as the left and right singular vectors,
it follows by a low-rank approximation of rank h Eckart and Young [1936], where h is the
h first ranks chosen in T.

Ẑx,t =
h∑
i

ρiUx,iVi,t =
h∑
i

βi
xκ

i
t

Despite the fact that Lee and Carter [1992] proposed an approximation by rank 1,
the choice of rank could also be determined by the total explained variance of h-rank
approximation:

∑h
i ρ

2
i .

Forecast

Forecast of Lee-Carter model is accomplished by extrapolating κt, after αx, κt and βx are
estimated as described above, κt is then further modelled using time series techniques, a
random walk with drift model provides a satisfactory result.

κt = κt−1 + δ + ϵt

κ̂t+1 = κt + δ

One of the limits presented by Lee-Carter model is its lack of consideration of the
medical improvement or environmental change, this model emphasizes the historical ob-
servation from which the pattern and trend observed are assumed to continue in the future
by the extrapolation of time-varying factor κt,

2.2.2 Poisson log-bilinear

An extension to Lee-Carter model is Poisson log-bilinear model of Brouhns et al. [2002],
compared to Lee-Carter model, this model successfully addressed the unseemingly realistic
hypothesis of homoscedasticity of ϵx,t, due to higher volatility induced by the limited
exposure numbers of extreme age.

The main difference is to model the number of deaths Dx,t as a random variable of
Poisson distribution:

µx,t = exp(αx + βxκt)

Dx,t ∼ Poisson(Ex,t ∗ µx,t)

Ex,t represents as before the exposure and mx,t the mortality rate modelled by Lee-
Carter model. Instead of a SVD decomposition method, Poisson log-bilinear model es-
timation is accomplished by Maximum Log-Likelihood and holds the same parameters
constraint regarding κt and βx.

The log-likelihood function of the Poisson log-bilinear model could be written as:
L(α, β, κ) =

∑
x,t[Dx,t(αx + βxκt)− Ex,texp(αx + βxκt)] + constant.

Newton iterative method is implemented to update the estimation of the parameters
θ:

θ̂(v+1) = θ̂(v) − ∂L(v)/∂θ

∂2L(v)/∂θ2

One of the three sets of parameters θ: αx; βx;κt is updated at each iterative v. The
interpretation of parameters remains the same with Lee-Carter model, κt is assumed to
follow an ARIMA (0,1,0) and linearly extrapolated to forecast future time dynamics.

κt = κt−1 + δ + ϵt
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A first application on HMD US male mortality data

Figure 2.4 illustrates a first tentative to model of male logarithm mortality force in US
from 2000 to 2019, αx shows the general pattern of mortality force over different ages,
after peak mortality rates due to the infant mortality, mortality force demonstrates a log-
linear shape over ages, especially after age 20. κt proves the overall mortality improvement
among the general population, which is in line with the increase in life expectancy observed
after World War II. Despite the fact that each age illustrates distinct sensitivity towards
the overall mortality improvement, the majority of age groups act in accordance with the
common trend (positive βx). Nonetheless, it also appears that males aged between 25 - 30
in US detached from the improvement (negative βx), furthermore at the elder ages, this
improvement seems to decline or stagnate, explication among extreme ages (age > 95)
may be difficult due to the volatility and wake exposure numbers, but these phenomenons
are in the interest of this thesis to understand from a cause-of-death view.

Figure 2.1: αx Figure 2.2: βx

Figure 2.3: κt

Figure 2.4: Poisson log-bilinear model parameters on US male logarithm mortality force,
data source: Human Mortality Database (HMD) US mortality data 2000-2019

2.3 Cause-of-death: definition; classification and data

2.3.1 Cause-of-death definition

The underlying cause of death is defined as "the disease or injury which initiated the
train of morbid events leading directly to death, or the circumstances of the accident or
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violence which produced the fatal injury" according to the World Health Organization
(WHO), which is designated in the death certificate (template shown in 2.5).

Figure 2.5: International form of medical certificate of cause of death provided by WHO

Nevertheless, the definition of each cause of death may vary among different countries
and regions, which brings the challenge of the mortality reporting system and worldwide
study on the cause of death study, from which was initiated International classification of
diseases (ICD), appeared in the 19th century and latest updated after the 11th revision
in 2019, it came into effect on January 2022. The ICD serves as the broad standard of
classification of death, each disease is classified with a unique code in order to facilitate
further use, most cause-of-death databases stick to the same standard (code).

However, it is complicated to work with more than a hundred causes of death in an
actuarial context, necessary mapping into a group of causes is then proceeded according
to the pathology; medical expert opinion and its impact on human health. 21 causes of
death are considered in total.

The 21 causes listed in Table 2.1 cover major causes of death and its mapping is
deemed appropriate, especially regarding the target country of this report: US.

2.3.2 Cause-of-death public databases

Human Mortality Database (HMD) is the current most widely used database in mortality
modelling. Several public US general population cause-of-death databases are available
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Number Cause name

1 Infectious
2 Neoplasms-Lung
3 Neoplasms-Colon
4 Neoplasms-Pancreas
5 Neoplasms-Prostate/Breast
6 Neoplasms-Other
7 Alzheimer-Dementia
8 Neurologic-Other
9 Heart Attack
10 Heart-Failure
11 Stroke
12 Influenza
13 Chronic Lower Respiratory Disease (CLRD)
14 Respiratory-Other
15 Digestive
16 Motor-Vehicle
17 Suicide
18 External-Other
19 Alcohol-related
20 Drug-related
21 Other

Table 2.1: Cause-of-death mapping classification list

with open access such as Human cause-of-death database (HCD) and Centers of Disease
Control and Prevention (CDC) data. Human cause-of-death database (HCD) provides a
number of deaths by cause in each five-year age range are the most similar to HMD, the
total number of deaths is consistent with HMD. An advantage of HCD is that it takes
into account the impact of classification version changes and thrives to provide more
consistent cause-of-death numbers according to a constant classification, it facilitates the
investigation of the study of cause-specific trends.

death country year sex list agf cause total d0 d95p
1 US 1979 1 interm 4 0 1044958.00 25996.86 10027.86
2 US 1979 1 interm 4 1 171.21 24.02 2.70
3 US 1979 1 interm 4 2 371.73 63.12 5.25
4 US 1979 1 interm 4 3 1538.68 0.95 4.41
5 US 1979 1 interm 4 4 5601.86 182.43 78.99
6 US 1979 1 interm 4 5 622.51 67.44 2.91
7 US 1979 1 interm 4 6 0.00 0.00 0.00
105 US 1980 1 interm 4 0 1075078.00 25808.69 11415.13
106 US 1980 1 interm 4 1 189.49 22.46 3.15
107 US 1980 1 interm 4 2 383.15 56.04 9.35
108 US 1980 1 interm 4 3 1488.61 2.02 9.39

Table 2.2: Example of HCD data

Year Sex Education Age COD113.lvl.1 COD113.lvl.2 COD113.lvl.3 COD113.lvl.4 COD113.lvl.5 Deaths
1 2008 M College 98 9 9 9 9 9 0
2 2002 M Unknown 98 9 9 9 9 9 0
3 2007 M Graduate 98 9 9 9 9 9 0
4 2002 M College 98 9 9 9 9 9 0
5 2005 M Bachelor 98 9 9 9 9 9 0
6 2006 M College 29 44 44 44 44 44 2
7 2001 F Graduate 68 53 54 58 61 62 9
8 2002 M High School 29 76 77 77 77 77 1
9 2009 M College 29 76 77 77 77 77 2
10 2012 M Unknown 29 76 77 77 77 77 0

Table 2.3: Example of CDC data
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Table 2.3 provides an example of Centers of Disease Control and Prevention (CDC)
data, which does not limit to providing cause-of-death data, and relevant periodic mortal-
ity reports involving cause-of-death, the census of the number of death of CDC is directly
retrieved or reported from medical death certificates from all the states of US, each death
certificate provides information about the single underlying cause-of-death and demo-
graphic data. Underlying cause-of-death is expressed as 4-digits ICD codes (110 causes of
death, 113 selected causes of death, 130 selected causes of death for infants, and categories
for injury intent and mechanism, or drug/alcohol-induced causes of death)

US mortality data produced by CDC are treated with final adjustment, another ad-
vantage of CDC data is the number of variables presented in the data, such as Educational
level. It allows to perform flexible selection among the population to take into account
the different mortality rates evolution in the sub-population. Table 2.4 summarises the
respective features and advantages of each database.

HCD CDC

Data source National Center for Health
Statistics (NCHS)

- National Center for
Health Statistics (NCHS)
- Centers of Disease
Control and Prevention
(CDC)

Age format Age groups : 0,1-4, 5,...95+ Single-year age: 0 - 110+

Cause-of-death
classification

- Constant classification
based on 3-digit ICD-10
codes
- Provides mapping list:
short and intermediary list
in death numbers dataset,
103 causes in intermediary
list.

- 4-digit ICD-10
- 113 selected causes of
death
- 130 selected causes of
death for infants

Data availability 1979 - 2018 (Most recent) 1999-2020

Advantages - Similarity with HMD
- Stable classification

- More genuine data source
- More variable choices
which allow to study differ-
ent sub-populations

Table 2.4: Summary of available US general population mortality database

2.3.3 Adjustments

This thesis used CDC data from 2000 to 2019 in order to ensure stability regarding some
variables and the version of ICD applied in the database. Furthermore, the main study
age range in this thesis is 20-95, in line with the main age range used in the current
actuarial context. A preliminary minor smoothing by adding 0.5 to the death numbers is
also performed, in order to eliminate zero deaths of some causes in young or elder ages.
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2.4 Literature review of Cause-of-Death modelling ap-
proach

Many researchers have studied cause-of-death modelling and it captures more attention
in recent years given the mortality evolution issues shown above, some of them thrived
to maintain the use of the classic stochastic mortality model under a multivariate form.
Alai et al. [2018] suggested a multinomial logistic model capture the intrinsic competing
risk nature among causes, Boumezoued et al. [2019] proposed a multivariate Lee-Carter
framework to model independently the central trajectory (Best-estimate) of each cause of
death by Lee-Carter model, and use a correlation matrix based on the residuals of κt to
capture the dependence structure within causes.

Another approach inspired by Aitchison [1982] on Compositional data analysis (CoDa),
which involves modelling non-negative components whose sum is constant, Oeppen et al.
[2008] first applied CoDa on the multiple-decrement mortality model on the Japanese pop-
ulation, it models the life table death distribution to obtain more coherent cause-specific
mortality. Afterwards Bergeron-Boucher et al. [2017] follows the same techniques on
multi-population mortality forecast, it has been proved the dependence structure among
different causes is directly incorporated in the central trajectory and conciliates the evo-
lution of each cause with the aggregate level mortality rates. Kjærgaard et al. [2019]
proposed two variant models on the base of Oeppen et al. [2008] with aim to consider spe-
cific characteristics within each cause. Instead of modelling life table deaths distribution,
Piveteau and Tomas [2018] suggested imposing an aggregated mortality forecast con-
straint and model proportions of each cause. The CoDa application on mortality models
especially in a cause-of-death context is still developing but has already displayed satis-
factory results emphasising the competing risk concept and providing a coherent forecast
of each cause of death.

Along with the trend of machine learning and the enhancement of computational
power, Ludkovski et al. [2018] and Huynh and Ludkovski [2021] proposed a non-parametric
way to model the dependence structure through the Gaussian process, based on the
covariance function. This approach is still novel and not mature, and how to relate
it to the context of mortality risk calibration still needs to be deepened.

This thesis first investigated the modelling approach proposed in Boumezoued et al.
[2019] because of its convenient implementation and convenience to output results of
mortality risk. After evaluating its performance and limits, Compositional data analysis
(CoDa) models suggested in Oeppen et al. [2008]; Piveteau and Tomas [2018] is tested in
order to address the limits encountered in the first model.



Chapter 3

Independent cause-specific model

This chapter intends to implement the multivariate Lee-Carter model as suggested in
Boumezoued et al. [2019] with independent cause assumption and construct aggregate
mortality rates prediction interval based on a correlation matrix calibrated between causes.

3.1 Theory and assumption
Firstly, aggregate level mortality force µx,t could be decomposed as the sum of cause-
specific mortality force, indeed, given the number of deaths in each cause, the cause-
specific mortality force which is assimilated by the mortality rates could be expressed as
below.

µx,t,i =
Dx,t,i

Ex,t∑
i

µx,t,i = µx,t

Each individual is ultimately dead of a single cause, not multiple causes at the same
time, this is referred to as the competing risk framework, the lifetime of an individual
could then be expressed as the minimum survival duration of each cause. For two causes
A and B, the respective lifetime associated to each cause could be written as:

• TA: lifetime of cause A

• TB: lifetime of cause B

• T: lifetime

• T = min(TA, TB)

The lifetime of an individual is determined by the arrival of the first fatal cause.
Therefore the survival function at the age a

S(a) = P (TA > a, TB > a) = exp(−
∫ a

0

µy dy)

The net cause-specific probabilities is defined as P (TA < a + δ|TA > a) but not easy
to be estimated in practice (? proposed a copula method to estimate net cause-specific
intensities). Only the duration of the fatal cause can be observed while the duration of
other causes are truncated, which means only the crude cause-specific probability P (TA <
a + δ|T = Ta, TA > a) can be observed. Therefore it is convenient to assume causes are
independent so that the cause-specific net rate could be determined by the crude death
rate µx,t,i, which leads to S(a) = P (TA > a) × P (TB > a) = exp(−

∫ a

0
µA(y) dy) ×

exp(−
∫ a

0
µB(y) dy).

41
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3.2 Historical observation
This section is on purpose to detect the historical trend of cause-of-death mortality, the
historical trend in the calibration period plays a forceful role in the future forecast, par-
ticularly in the modelling of κt,i.

Figure 3.1, Figure 3.2 display the top 5 cause contributions and Figure 3.3, Figure 3.4
show the top 5 cause evolution within each age in the last year available in the data, it is
apparent that different ages experience different major causes.

• As for the age range 20-50, Drug was revealed as a potential source of mortality
improvement distortion due to its sharp increase. Not only it increased rapidly
from 2000 to 2019, but also it appears as one of 5 major causes in some ages such
as 50. External causes occupy an important role as well and causes related to
cardiovascular diseases gain more influence starting from 40 years old.

• For age above 60, Cardiovascular diseases including Hear-Attack and Heart-Failure
are the most important sources of death and the exposure probability to these
two risks increases along with the age. More importantly, improvement among
Cardiovascular causes seems to stagnate after the year 2010. On the other hand,
Dementia impacts elder ages, especially above 85. Although, the sharp increase
tends to stop after 2010.

• Age between 40 and 80 encounter more diversified causes since the sum of top 5
cause proportions are below other ages.
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Figure 3.1: Top 5 male cause contributions by age
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Figure 3.2: Top 5 female cause contributions by age
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Figure 3.3: Top 5 male cause-specific historical evolution
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Figure 3.4: Top 5 female cause-specific historical evolution
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3.3 Modelling and forecast results

This section introduces the central trajectory prediction which is based on the independent
assumption among causes. The modelling steps consist of:

• Fit independently Poisson log-bilinear model for each cause

• Under the above independence assumption, each cause is modelled independently
and the aggregate mortality rates could be expressed as the sum of cause-specific
mortality rates. Poisson log-bilinear model is applied to each cause to forecast its
central trajectory.

µx,t,i = exp(αx,i + βx,iκt,i)

Dx,t,i ∼ Poisson(Ex,t ∗ µx,t,i) =
(Ex,t ∗ µx,t,i)

Dx,t,ie−Ex,t∗µx,t,i

Dx,t,i!

from which

κt+1,i = κt,i + δ + ϵt,i

Σ = cov(ϵt,i, ϵt,j)

κt,i is further extrapolated for the forecast:

κ̂t+1,i = κt,i + δ

µ̂x,t+1,i = exp(αx,i + βx,iκ̂t+1,i)

µ̂x,t+1 =
∑
i

µ̂x,t+1,i

• Model each κt,i by ARIMA (0,1,0) and collect residuals ϵt,i of each cause.

Figure 3.5 and Figure 3.6 compare the trend parameters from each cause and from the
All-Cause model where the bold line represents the trend factor from the All-cause model,
Drug-related ; Alzheimer - Dementia;Alcohol-related and Suicided are highlighted by solid
line. It can be observed that they share the opposite trend as in the All-Cause model, Sui-
cide; Alcohol-related; Drug-related; Alzheimer-Dementia all have increased between 2000-
2019. Especially Drug-related cause proves a significant lift compared to other causes.
Alzheimer-Dementia also has experienced a different trajectory but the increase tends to
slow down starting from 2011. Appendix 4.5.1 shows the two other parameters of αx,i

and βx,i of each cause.
As mentioned in subsection 2.2.2, the model forecast of the Poisson log-bilinear model

is realized by extrapolation of κt,i. Therefore the future mortality force trajectory is highly
impacted by the drift parameter δ fitted in the historical period, this drift is assumed
to continue during the whole forecast horizon. The mortality risk is often involved in
long-term uncertainty, in the meantime in order to capture the most recent experience
which carries more valuable information, especially as observed in the historical period,
most causes showed a turning point around 2010. As a first tentative and to test model
suitability, the forecast horizon is set to 20 years, from 2020 to 2039.
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Figure 3.5: All-Cause and By-Cause male model κt
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Figure 3.6: All-Cause and By-Cause female model κt
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For the purpose of comparing the By-Cause model with the independence assumption
and All-Cause model output, Figure 3.7 and Figure 3.8 show the sum of all causes fore-
cast mortality rates which constitute the By-Cause aggregate mortality forecast. Some
conclusions could be drawn from the comparison below:

Figure 3.7: All-Cause and By-Cause male model forecast

• According to forecast results, the independence assumption model presents more
pessimism than the All-Cause model, this effect is mainly driven by Drug-related
and Alzheimer-Dementia cause

• Trend differences between All-Cause and By- Cause for ages between 30 and 59 is
mainly driven by drug and other, which registered a highly increasing trend in the
past years, especially 30-54. Furthermore, for certain ages 30-35, the mortality rate
has already shown no sign of improvement in the past years.

• The stagnation of the Cardiovascular-family cause improvement and the increase
of Alzheimer-Dementia are the main reasons for mortality improvement slowdown
in the By-Cause model for older ages. However the increase is relatively less than
younger ages, which is in line with the recent slowdown of Alzheimer-Dementia after
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Figure 3.8: All-Cause and By-Cause female model forecast

2011. Under the linear extrapolation forecast method, Alzheimer-Dementia still has
an important trend.

3.3.1 Prediction interval

The next step consists of building a prediction interval of aggregate mortality rates, ag-
gregate level uncertainties depend on the dependence structure between causes in order
to take into account mutual diversification between causes. This dependence structure is
assumed to be captured by the correlation matrix between residuals ϵt,i of κt,i .

Figure 3.10 and Figure 3.9 display the correlation matrix of residuals ϵt,i of κt,i for
male and female. The correlation matrix contains pairwise correlation coefficients between
causes and is used to simulate scenarios.

While the correlation matrix is automatically derived from the data and underlying
model, the resulting matrices do not have a stable structure, it is highly sensitive to the
choice of calibration period and the number of data points.

Based on the variance-covariance matrix Σ from residuals of κt,i, the future trajectory
of each κt,i can be simulated by taking into account dependence structure within causes by
assuming a multivariate normal distribution between residuals of κt,i and through 10000
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simulations:

• Cholesky decomposition of variance-covariance matrix Σ = RRT

• Generate independently and identically distributed standard normal distribution
vector z

• The target simulated multivariate vector could then be written as ϵ = R*z

• Add simulated vector ϵ to initial central trajectory vector κt,i recalculate the forecast
of each cause and corresponding new aggregate mortality probabilities forecast.

Figure 3.11 and Figure 3.12 showed the resulting prediction interval for each gender, it
can be seen that male and female both generate more uncertainties towards the end of
the forecast horizon.

Figure 3.9: Female correlation matrix
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Figure 3.10: Male correlation matrix
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Figure 3.11: Male prediction interval between [0.5% , 99.5%]
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Figure 3.12: Female prediction interval at [0.5% , 99.5%]
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3.4 Life expectancy
Life expectancy is a crucial measure of the average (residual) lifetime of an individual,
as a function of death rate (survival probability), investigating such a concept could offer
a more comprehensive view of risk encountered by the insurance company, not only for
the mortality risk factor. In this section, life expectancy has been calculated using the
following assumptions and inputs as described in Table 3.1:

All-Cause By-Cause

Age 0-110
By-Cause aggregate mortality rates forecast

from age range 20 to 95 + All-Cause Best-estimate
aggregate mortality rates for 0-19 and 96-110

Method Period life expectancy Period life expectancy

Table 3.1: Inputs and assumption

Figure 3.13: All-Cause and By-Cause male residual life expectancy at different ages

Since only ages between 20-95 are modelled in By-Cause model, the All-Cause best-
estimate mortality forces of 0-19 and 96-110 are used to complete the table, thus the
difference displayed in the life expectancy is only due to the 20-95 projection in By-Cause
and All-Cause models. Furthermore, in this section life expectancy is calculated using
the period life table, the period table calculates the mortality rates from a single year and
assumes that for the rest of life, the mortality rates will remain the same.

Figure 3.13 and Figure 3.14 illustrate the period life expectancy from All-Cause and
independent cause-specific model. As per the results of the period life expectancy forecast,
the By-Cause model produced a more pessimistic result . This can be observed in the
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Figure 3.14: All-Cause and By-Cause female residual life expectancy at different ages

life expectancy at birth which takes into account all major causes’ impact throughout the
whole life, which demonstrates even unrealistic results as the decline of almost 2 years
of expected lifetime in 20 years. This pessimism is mainly conducted by the underlying
assumption in the modelling approach, each cause will independently follow the historical
trend and continue until the end of forecast horizon, therefore Drug-related that has shown
a rapid increasing trend in the historical period is assumed to follow the same increasing
trend in the forecast horizon. Drug-related impacts mainly young and middle age groups,
which explains the reason why there is more pessimism or even unrealistic result in life
expectancy at birth than at age 60.

3.5 Limits

While an independent cause-specific model provides advantages in modelling and sheds
light on individual characteristics of cause evolution, it may be deemed unrealistic when
the forecast horizon is expanded to a longer period. Even at a 20-year forecast, life
expectancy at birth already displayed a reduction of 2 years of life in 20 years, which is a
relatively implausible scenario for a best-estimate forecast.

As mortality risk needs to be projected long term in (re-) insurance companies, a
longer period forecast is calculated using the model. Figure 3.15 and Figure 3.16 display
the forecast of aggregate mortality rates in 60 years. Resulting aggregate mortality rates
from the independent cause-specific model are at least doubled compared to the All-Cause
model, after 60 years in 2080.

It should be noted that the calibration period was set to 20 years in order to ensure
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Figure 3.15: All-Cause and By-Cause male mortality probabilities forecast for 60 years

cause-of-death data stability, a forecast horizon of 60 years may exaggerate the historical
trend of each cause observed in the last 20 years.

Furthermore, under the assumption of independent structure and linear extrapolation
method, certain increasing causes may easily become dominant in the future, Figure 3.17
illustrates the aggregate and Drug-related log-mortality rates forecast for male aged 30,
Drug-related that has demonstrated a sharp increase in the calibration period will become
dominant in the forecast in the young ages.

Another potential explication is already cited in Wilmoth [1995] as dis-aggregated
forecasts always output more pessimistic results, thus lack of dependence structure on
best-estimate projection may not be suitable in mortality risk evaluation.

As a potential solution, the unrealistic forecast of the long-term forecast of the inde-
pendent cause-specific model could be adjusted by applying expert judgement, for example
by using breakpoint method to select most recent trend; setting up upper boundary of
the end year of forecast of Drug-related mortality rates and adjusting the drift in the κt

of Drug-related ; or directly by fixing its mortality improvement a positive value.
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Figure 3.16: All-Cause and By-Cause female mortality probabilities forecast for 60 years

Figure 3.17: Aggregated and Drug-related log-mortality rates forecast for male aged 30



60 CHAPTER 3. INDEPENDENT CAUSE-SPECIFIC MODEL



Chapter 4

Compositional data analysis

Independent assumption presented in the previous chapter, due to its simplicity, long-
term forecast based on this model may produce unrealistic results at the aggregate level,
which suggests it might not be suitable for internal use. Among the alternative cause-
of-death modelling approaches which could address these issues above, Compositional
data analysis suggests imposing an aggregate level constraint and forecasting each cause
as proportion to ensure a coherent forecast. It is realized by its intrinsic mechanism to
incorporate dependence structure between causes, the increase of proportion from a cause
must induce the decrease of others under the sum constraint. This chapter intends to
explore Compositional data analysis for the purpose of coherent cause-specific forecasts
with respect to aggregate level evolution.

Two sub-models of Compositional data analysis are tested which differ in the trend
parameter choice, one proposes to assume every cause follows a shared trend and the other
suggests allocating each cause a trend factor in order to capture cause-specific dynamics.

Table 4.1 summarizes the difference between the three models tested and their re-
spective advantages and limits.

Table 4.1: Model comparison

Model name Modelling approach Advantages Limits

Independent cause-
specific model

Model each cause-of-
death independently

Easy implementa-
tion and emphasize
on individual cause
characteristics

Unrealistic long-term
forecast of aggregate
mortality rates

CoDa Common Trend

- Pre-determine aggre-
gate mortality rates
forecast as constraint
- Model each cause’s
proportion
- Assume a common
trend for every cause

- Coherence of cause-
specific forecast with
respect to aggregate
mortality rates.
- Explanatory ability
- Risk transfer between
cause-of-death and
ages

- Long term forecast
predicting dominance
(over 70%) of Drug-
related cause
- Common Trend for
each cause

CoDa Multi Trend

- Pre-determine aggre-
gate mortality rates
forecast as constraint
- Model each cause’s
proportion
- Assume an individual
trend for every cause

- Coherence of cause-
specific forecast with
respect to aggregate
mortality rates.
- Explanatory ability
- Specific trend evolu-
tion for each cause
- Risk transfer between
cause-of-death and
ages

Long term forecast
predicting dominance
(over 70%) of Drug-
related cause

61
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4.1 Theoretical background of Compositional data anal-
ysis

Compositional data analysis (CoDa) [Aitchison [1982]] intends to apply common statistical
techniques on non-negative values whose sum is constant, compositions could be seen as
percentages or proportions of a whole, vary from 0 to a defined sum constraint. More
importantly, they belong to a positive simplex space defined as below:

Sd = x1, ...., xd : xi > 0, (∀i = 1, ..., d), x1 + ...+ xd < 1

Usual multivariate analysis isn’t applicable in the compositional context, due to the
intrinsic sum constraint barrier. Aitchison [1982] proposed a logistic transformation on
initial compositional vector from Sd to Rd from a function: f : Sd → Rd in order to study
compositional vector properties in an unconstrained space.

Several properties in the simplex space ought to be pointed out:

• For a d-dimension compositional vector X which satisfy sum constraint
∑d

i xi =
M, (∀i = 1, ..., d)

• Operator C: return transformed values S = f(x) back to proportions. C(Y) =
[ Yi∑

Yi
, ...,

Yj∑
Yi
]×M

• ⊕: Association between two compositional vectors called Perturbation: Z = X1 ⊕
X2 = C(x1

1x
1
2, ..., x

d
1x

d
2)

• ⊖: Perturbation with inverse element of another compositional vector: X1 = Z ⊖
X2 = C(z1/x1

2, ..., z
d/xd

2)

One of the feasible transformations proposed is the centred log-ratio (clr-) transfor-
mation, expressed as below with g: the geometric mean of the compositional vector

g = (x1 ∗ x2 ∗ .... ∗ xd)
1/d

U = clr(X) = [ln(
x1

g
), ..., ln(

xd

g
)]

X = clr−1(U) = C(eU1 , ..., eUd)

where U represents the transformed vector in real space and clr−1 is the inverse
transformation returning transformed values into compositional data. Compared to other
transformation functions, clr-transformation provides better interpretability since the
greater the proportion, the greater the clr-transformed values. Because the transformed
values belong afterwards to the real space, it is appropriate to implement statistical anal-
ysis over these values and transform them back into compositional vectors.

4.2 Cause-of-death modelling with CoDa

This section introduces the adaptation of CoDa model in the mortality risk modelling
context.



4.2. CAUSE-OF-DEATH MODELLING WITH CODA 63

4.2.1 Compositional Lee-Carter model

The first application of CoDa on cause-of-death modelling is developed by Oeppen et al.
[2008], and two variants are proposed from Kjærgaard et al. [2019]. They suggest to use
the CoDa Lee Carter model to produce a coherent forecast of life table death distribution
under the constraint of life table radix. Deaths are redistributed from an age-cause group
to other age-cause groups, one survived from age x1 and cause i and died of cause j at age
x2, will reduce the mortality rates at the age-cause group (x1, i), and increase the mortality
rates of another age-cause group (x2, j). This leads to the following clr-transformation
and modelling approach:

clr(dx,t,i ⊖ αx,i) = βx,iκt + ϵx,t,i (4.1)

where dx,t,i represents the life table death of cause i, at age x and year t, αx,i geometric
mean of cause and age over year, βx,i measures the age-and-cause-specific sensitivity to
trend factor κt, it describes the gain (loss) of deaths for an age and a cause in relative
terms. For example, a positive βx,i value combined with a positive κt output a positive
clr value, which means this causes i at this age x gains more proportions.

From this basis, Kjærgaard et al. [2019] proposes to allocate for each cause a trend
parameter in order to capture each cause’s own evolution:

clr(dx,t,i ⊖ αx,i) = βx,iκt,i + ϵx,t,i (4.2)

Another approach developed by Piveteau and Tomas [2018] suggested imposing an
aggregate mortality rates forecast constraint by age and year, which is derived from an All-
Cause model such as Poisson log-bilinear model, and links the cause-of-death distribution
of each age to this aggregate mortality rates constraint. This approach allows project-
ing directly cause-specific mortality rates, and it carries out more explanatory values on
cause-specific proportions related to classical common mortality modelling practice. Clr-
transformation is done in this case within each fixed age clr(dxt,i ⊖ αx

i ) and then stacked
together to be decomposed under the hypothesis of Common Trend (see 4.2.2).

This latter approach has been retained for this thesis as alternative approach to model
cause specific mortality rates, due to its closeness with the classical modelling approach,
and its explanatory ability.

Furthermore this thesis also attempts to apply the Multi Trend variant suggested in
Kjærgaard et al. [2019] under the latter approach’s aggregate mortality rates constraint.

4.2.2 Modelling steps

The main idea is to apply Lee-Carter model on clr-transformed compositional vectors,
and use the same extrapolation techniques on κt. The steps of CoDa modelling could be
summarized as follow:

• Determine first aggregate mortality rates central trajectory forecast qx,t by a classical
model such Lee-Carter.

• Restrain sum of the proportion of each cause to 1, the variable of interest is the
distribution of each cause

∑
i Dx,t,i = Dx,t =>

∑
i qx,t,i = qx,t => (

∑
i qx,t,i)/qx,t = 1

• Obtain the matrix of mortality proportion S = sx,t,i = qx,t,i/qx,t with qx,t as All-
Cause mortality rates
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• Transform mortality proportion matrix S by centered log-ratio clr for each indepen-
dent age group x: clr(dxt,i ⊖ αx

i ) which is perturbed by the geometric mean of the
age-composition at time t: g, stack all N age groups’ clr-transformed values to a
single matrix of dimension (NK × T): Y with N ages; K causes and T years

• Apply SVD on clr-transformed values matrix Y to obtain beta, kappa and subse-
quent forecast of clr-transformed values matrix Y Pred

• Perform inverse transformation clr−1 of forecast clr-transformed matrix Y Forecast by
the operator C(exp(Y)). The dependence between causes is realized by the operator
C(exp(Y)), which normalizes the clr values into proportion.

• Derive cause-specific proportion forecast SForecast which is multiplied by forecast qx,t
determined in the first step.

The clr-transformed matrix Y could differ by the choice of model. All causes’ propor-
tions by age and year are stacked in a single matrix, for N ages, K causes and T years, the
clr-transformed matrix Y is of dimension (NK × T). The single matrix leads consequently
to an estimation of a unique κt, and as the underyling hypotheses is that all causes follow
the same trend, the model is referred as CoDa Common Trend (CT).



T1 T2 . . . TT

N1, K1 clr clr clr clr
N1, K2 clr clr clr clr
N1, K3 clr clr clr clr

. . . . . . . . . . . . . . .
N1, KK clr clr clr clr
N2, K1 clr clr clr clr

. . . . . . . . . . . . . . .
NN , K1 clr clr clr clr

. . . . . . . . . . . . . . .
NN , KK clr clr clr clr


Table 4.2: Common Trend
clr-transformed matrix


T1 T2 . . . TT

N1, K1 clr clr clr clr
N2, K1 clr clr clr clr

. . . . . . . . . . . . . . .
NN , K1 clr clr clr clr


... 

T1 T2 . . . TT

N1, KK clr clr clr clr
N2, KK clr clr clr clr

. . . . . . . . . . . . . . .
NN , KK clr clr clr clr


Table 4.3: Multi Trend clr-
transformed matrices

Instead of assuming a common trend, another alternative is to take into account the
distinct evolution of each cause by adjusting the stacked clr-transformed matrix Y as
shown in Table 4.2.

Separate decomposition of K cause-specific transformed matrices, which leads to K
matrices of dimension N x T, allows obtaining K trend factor κt,i. This model is referred
as the CoDa Multi Trend (MT). The structure of the matrix is shown in Table 4.3.

After the forecast of each cause’s matrix, all the matrices are stacked together again
with the same dimension as in CoDa Common Trend (NK x T).

The last step of normalization realized by operator C(exp(Y)) is performed on the
stacked matrix of dimension NK x T. This final step ensures to capture the dependence
and interactions between the causes of death and the ages through the time.

4.3 Modelling and results
This section introduces the application of CoDa Common Trend (CT) and CoDa Multi
Trend (MT) on CDC data. Age between 20-95 and years from 2000-2019 was selected to
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ensure data stability towards classification standard changes, and sufficient cause-specific
exposure among different ages.

4.3.1 Results

Clr-transformation

The first step consists of transforming initial cause-specific proportions into real space
values by clr, Table 4.4 to Table 4.5 shows an example from female cause-specific propor-
tions at age 20 to clr-transformed matrix. The clr transformed values are in line with the
initial proportion order as the causes that weight more at age 20 present larger clr values
as well.

Initial proportions 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Infectious 0.022 0.021 0.021 0.028 0.016 0.018 0.024 0.027 0.020 0.020
Neoplasms-Lung 0.001 0.002 0.002 0.002 0.003 0.004 0.002 0.001 0.002 0.001
Alzheimer-Dementia 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001
Neurologic-Other 0.004 0.001 0.001 0.001 0.003 0.002 0.001 0.004 0.001 0.003
Heart-Attack 0.004 0.008 0.006 0.004 0.003 0.004 0.003 0.007 0.003 0.003
Heat-Failure 0.041 0.033 0.026 0.025 0.029 0.029 0.039 0.032 0.036 0.041
Stroke 0.033 0.014 0.020 0.018 0.017 0.020 0.019 0.010 0.018 0.021
Motor-Vehicle 0.349 0.354 0.363 0.349 0.376 0.333 0.356 0.319 0.296 0.277
Suicide 0.060 0.058 0.076 0.061 0.066 0.079 0.064 0.077 0.088 0.091
External-Other 0.154 0.142 0.154 0.149 0.150 0.155 0.130 0.153 0.144 0.139
Alcohol-related 0.005 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Drug-related 0.039 0.047 0.039 0.050 0.041 0.075 0.079 0.105 0.090 0.084
Other 0.196 0.205 0.182 0.208 0.203 0.189 0.209 0.163 0.210 0.202

Table 4.4: Cause-specific proportion of Female at age 20

Clr 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Infectious 0.949 0.820 0.823 0.841 0.841 0.830 0.859 0.814 0.775 0.757
Neoplasms-Lung −1.811 −1.751 −1.821 −1.853 −1.904 −1.931 −2.013 −2.023 −2.040 −2.050
Alzheimer-Dementia −2.678 −2.680 −2.702 −2.710 −2.733 −2.738 −2.763 −2.764 −2.763 −2.753
Neurologic-Other −1.949 −2.488 −2.285 −2.147 −2.032 −1.966 −1.664 −1.727 −1.737 −1.691
Heart-Attack −0.693 −0.659 −0.711 −0.733 −0.769 −0.791 −0.849 −0.862 −0.881 −0.894
Heat-Failure 1.194 1.286 1.268 1.250 1.243 1.238 1.203 1.219 1.226 1.218
Stroke 0.728 0.820 0.756 0.722 0.684 0.657 0.578 0.571 0.553 0.530
Motor-Vehicle 3.695 3.732 3.678 3.654 3.630 3.594 3.538 3.506 3.461 3.416
Suicide 1.811 1.905 1.975 1.988 2.043 2.083 2.135 2.196 2.255 2.280
External-Other 2.790 2.845 2.812 2.794 2.782 2.762 2.723 2.712 2.690 2.662
Alcohol-related −1.806 −1.457 −1.710 −1.842 −2.008 −2.106 −2.424 −2.436 −2.487 −2.545
Drug-related 1.457 1.535 1.677 1.717 1.820 1.897 2.021 2.118 2.219 2.275
Other 3.059 3.094 3.080 3.071 3.072 3.059 3.043 3.034 3.018 2.993

Table 4.5: Clr-transformation values of Female at age 20
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Choice of rank

As explained above, a compositional Lee-Carter model is employed and parameters es-
timation is realized by Singular Value Decomposition (SVD), which requires low-rank
approximation. Figure 4.1 and Figure 4.2 show the explained variance cumulative per-
centage from CoDa Common Trend and CoDa Multi Trend, in order to set a unique rank
number for both models and more importantly for each cause in the CoDa Multi Trend.
Rank 3 seems to be a reasonable choice of low-rank approximation since the 3 first ranks
explain at least 90% of the total variance.

Figure 4.1: CoDa Common Trend explained variance percentage

Common Trend: parameters interpretation and risk transfer concept

Figure 4.3 and Figure 4.4 demonstrate the first 3 ranks of κt and the first rank of βx,i

accounted for the fit and forecast of clr-transformed values matrix Y Pred in CoDa Common
Trend. It could be observed that the first rank of κt, which has the biggest value, is always
negative for both male and female, the sign of κt should be always associated with the
sign of βx,i.
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Figure 4.2: CoDa Multi Trend explained variance percentage

The combination of the sign of these two parameters indicates qualitatively the rel-
ative importance of each cause within a fixed age. Focusing on the first rank of the
parameters and as an example for male and female aged 20, κt is negative, Neoplasm
- Prostate/Breast has a very positive β20,Neoplasm−Prostate/Breast while Drug-related has a
very negative β20,Drug−related. This means that, combined with the value of κt , during
the period, the cause Drug-related is gaining additional deaths while for the Neoplasm
- Prostate/Breast cause is having less deaths. This also demonstrates the explanatory
ability of CoDa models.
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Figure 4.3: CoDa Common Trend κt and βx,i for male

Based on βx,i in Figure 4.3 and Figure 4.4, female and male maintain similarly the
same cause-of-death distribution for each age, except for Neoplasm-Prostate/Breast which
by nature has different target ages.

An important mechanism and adding value of CoDa framework is the concept of risk
transfer, the reduction of the mortality risk in a cause or at an age, will result in an increase
in other causes and ages. The mechanism of risk transfer can be better understood via
the CoDa framework by the difference of βx,i.

It is worth mentioning that the quantification of this mechanism of transfer of risk
in the CoDa Common Trend is not straightforward to determine, because it is not only
impacted by the parameters κt and βx,i of each cause, initial proportion and other causes’
parameter are also needed to be considered in the quantification. The method to quantify
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Figure 4.4: CoDa Common Trend κt and βx,i for female

the risk transfer is proposed in Piveteau and Tomas [2018] by computing:

∂
Dx,t,i

Dx,t

∂t
=

∑
i

(βx,i − βx,j)
∂kt
∂t

E[
Dx,t,i

Dx,t

]E[
Dx,t,j

Dx,t

] ∀i, j ∈ K (4.3)

The quantity of the transferred risk is a function of the difference in βx,i between
causes, the drift of the trend and the proportion of each cause.

In order to better understand the formula, Figure 4.5 shows the difference of βx,i

compared to Drug-related for male and female for all ages which gives some insights
about the direction of risk transfer defined in the equation above. Most of the difference is
positive in the young ages, it means that Drug-related gained more proportion in younger
ages and this observation is more important in male compared to female, which is in line
with what has been detected in historical observation.
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Figure 4.5: CoDa Common Trend βx,i difference compared to Drug-related
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Multi Trend: parameters interpretation and risk transfer concept

While Common Trend assumes a shared trend for each cause, CoDa CoDa Multi Trend
considers the evolution dynamics of each cause and thus attributes a trend factor to
each cause, and still follows the same constraint. Each cause’s clr-transformed matrix of
dimension N x T is decomposed separately as shown in Table 4.3, each cause has its own
trend parameter κt,i and βx,i. The interpretation of βx,i is thus different in Multi Trend
as it represents the age and cause of death trend specific sensitivities.

The formula related to risk transfer described for the CoDa Common Trend Equa-
tion 4.3 needs to be further adjusted accordingly for CoDa Multi Trend.

Figure 4.6: CoDa Multi Trend κt,i and βx,i for male

It could be seen that according to Figure 4.6 and Figure 4.7 which illustrate the κt,i

and βx,i of each cause, not all the causes followed the same trend in the past 20 years.
Heart attack had a decreasing trend while Influenza and Infectious had a increasing trend.
βx,i distribution between male and female has the same observation than in the CoDa
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Figure 4.7: CoDa Multi Trend κt,i and βx,i for female

Common Trend, most of the causes follow the same distribution, except for Neoplasm -
Prostate/Breast which has different target age groups.
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4.3.2 Model forecast

With the aim of long term forecasting using CoDa models, both CoDa Common Trend
and CoDa Multi Trend are set to forecast until 60 years.

In order to remain comparable with classical All-Cause modelling and previous inde-
pendent cause-specific model, each component of κt (κt,i) is modelled by an ARIMA (0,1,0)
and the forecast is realized by extrapolation on the time index. Along with the predicted κt

(κt,i), multiplied with previously estimated βn,i, a forecast clr-transformed matrix Y Forecast

could be obtained and inverse transformed to cause-specific proportions:RK ⇒ SK .

Figure 4.8: Female cause-specific forecast at age 60

Once obtained the forecast cause-specific proportions, cause-specific mortality rates
forecast could be calculated by multiplying proportions with the pre-determined All-Cause
mortality rates forecast.
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Figure 4.8 and Figure 4.9 illustrate cause-specific logarithm mortality rates forecast
at age 60 (see Appendix 4.5.1 for more ages), it could be noted that CoDa models gener-
ally have a less drastic forecast compared to the independent cause-specific model which
extrapolates log-linear historical trend, and shows an opposite trend in certain causes.
This is due to the sum constraint, and the fact that the increase of a cause also induces
the decrease of others as it can be observed in Drug-related. Indeed, all the other causes
except Drug-related will decrease after 2040.

Figure 4.9: Male cause-specific forecast at age 60
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4.4 Simulation of scenarios

Central trajectories for each cause have been calculated in the previous section. The
next step is to build a prediction interval of aggregate mortality rates, which requires
simulating future scenarios.

This section investigates how to simulate future scenarios of aggregate mortality rates
within the two CoDa models. The aggregate mortality rates forecast is pre-determined
using the classical All-Cause model and under the sum constraint, the sum of cause-specific
mortality rates forecast remains the same as with the All-Cause model.

4.4.1 Methodology

Before deriving the aggregate mortality rate dynamics, future deviations of cause specific
proportions need to be calculated as they result from the clr transformed values of the
compositional Lee-Carter model.

The uncertainties on the future cause-specific proportions are mainly influenced by
the trend factor, and the fluctuation of the trend factor could be simulated by adding a
yearly deviation et based on a run-off view. Since κt in both CoDa Common Trend and
CoDa Multi Trend are modelled and forecasted by an ARIMA (0,1,0): κt+1 = κt + δ+ ϵt,
the simulation is based on simulating the residuals ϵt which are assumed to follow a normal
distribution N ∼ (0, σ2), σ as the standard error of ϵt.

Since there exists a unique trend factor κt in the CoDa Common Trend, the steps
consist of simulating 60 yearly deviations and adding them to the initial forecast κt:

κscenario
t = κinitial

t + et

κscenario
t+1 = κinitial

t + δ + et + et+1

Each simulation contains 60 yearly deviations which cover the whole forecast horizon.
New κscenario

t will be multiplied by βx,i as well and a new clr-transformed matrix Y scenario

is obtained. For the sake of not introducing too much uncertainty from the estimation
error, the simulation is only applied to the first rank of κt, the rest remain the same as
in the initial forecast.

As for the CoDa Multi Trend, the same method from the independent model is used,
a correlation matrix between residuals of each κt,i is obtained, Figure 4.10 and Figure 4.11
show the correlation matrix for both genders, from which each residual is assumed to follow
a normal distribution and with the hypothesis of a multivariate normal distribution. Each
simulation produces 60 yearly deviations for each κt,i, followed by κscenario

t,i multiplying by
βx,i.

After the 10,000 simulations described above, 10,000 clr-transformed matrices Y scenario

are obtained for the CoDa Common Trend and CoDa Multi Trend . In the CoDa mod-
elling approach, these clr-transformed matrices will be returned back to the cause-specific
proportion matrix through inverse transformation clr−1.

This thesis proposes a method to adapt the inverse transformation translate the
deviations in terms of clr values into deviations in terms of mortality rates. The inverse
transformation operator is defined as C(exp(Y)) = [ exp(Yi)∑

exp(Yi)
, ...,

exp(Yj)∑
exp(Yi)

]
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Figure 4.10: CoDa Multi Trend correlation matrix for male

Figure 4.11: CoDa Multi Trend correlation matrix for female
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Simulation
on κt

by respective
method of

CT and MT

Obtain
corresponding

clr-transformed matrix

Calculate the∑
exp(Y scenario

i )
for each

age and year

Compared
with
initial

forecast∑
exp(Y initial

i )
and the

indicator Ix,t

Calculate
aggregate

mortality rates
qscenariox,t = qBE

x,t ∗ Ix,t

Step 1: Simulation

Step 2: Calculation of Qscenario
x,t

The denominator
∑

exp(Yi) could be seen as the proxy of aggregate mortality rates,
therefore an indicator which is the ratio of this proxy between a given simulation and the
central trajectory: Ix,t =

∑
exp(Y scenario

x,t,i )∑
exp(Y initial

x,t,i )
. It would represent the evolution of the aggregate

mortality rates in percentage for someone aged x and in year t.

4.4.2 Results

After computing the qscenariox,t from the method developed above for each simulation, 10,000
scenarios are obtained for each model, Figure 4.12 and Figure 4.13 illustrate the first 5
scenarios obtained.

It has come to attention that volatility in young and middle-aged groups is greater
than in elder age groups, which represents the relative instability of the dependence struc-
ture among young and middle-aged groups, elder age groups may encounter more diverse
causes of death, which implies a more stable cause dependence structure.

It is noteworthy that female at age 40-50 present more volatilities between CoDa
Common Trend and CoDa Multi Trend, and between male and female. The explanation
is that since CoDa Multi Trend considers the cause-specific evolution, it results in more
uncertainties on the future aggregate trajectories. Furthermore, as observed before, there
exist causes which have different target ages between male and female. For instance,
Neoplasm-Prostate/Breast impacts younger ages for female.
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Figure 4.12: CoDa Common Trend 5 scenarios
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Figure 4.13: CoDa Multi Trend 5 scenarios
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4.5 Life expectancy

This section aims to evaluate cohort life expectancy according to the simulated scenarios.
Cohort life expectancy is suggested as a mortality sensitivity measure in the internal
model from EIOPA [2018]. Based on the initial age range calibrated: 20-95, cohort life
tables are constructed by assuming the last year of life at 95-year-old and extending the
forecast horizon to 76 years.

In this section, no closing table methods were employed since cause-of-death data
quality at extreme ages may not be satisfactory, some methodologies regarding interpola-
tion or CoDa itself could be used to resolve cause-of-death data problem in extreme ages
[Piveteau [2021]]. Expected age at death is defined at attained age in 2020 plus corre-
sponding cohort life expectancy, Figure 4.15 and Figure 4.16 demonstrate the expected
age at death for a male/female who attained age from 20 to 80 in 2020 which is the
first year of projection as the data is from 2000 to 2019. The age range choice is based
on the exposure distribution according to the 2017 Individual Life Insurance Mortality
Experience Report from Society of Actuaries (SoA). ILEC is a committee of the SOA
(Society of Actuaries) that gathers the information necessary for the construction of the
VBT (Valuation Basic Table) mortality tables. It could be seen that age 20-80 occupy
more major proportions over 90% in total.

Figure 4.14: Exposure distribution by age and gender

Expected age at death prediction interval at 99% from All-Cause and CoDa models
are also shown in the same figures. The cohort life expectancy has been calculated using
the same methodology for the three models: All-Cause and CoDa models.

In comparison, the cohort life expectancy of the CoDa Common Trend end up ob-
taining a narrower interval compared to All-Cause model. The underlying explanation is
not straightforward because the models are different as shown below:

All-Cause : ln(µx,t) = αx + βxκt + ϵx,t

CoDa Common Trend : clr(dx,t,i ⊖ αx,i) = βx,iκt + ϵx,t,i

CoDa Multi Trend : clr(dx,t,i ⊖ αx,i) = βx,iκt,i + ϵx,t,i

The deviation of qx,t depends on both βx and the standard error of ϵt,i, the scale of
κt and the meaning of βx are different between the three models. Furthermore, Table 4.6
shows the standard error of residuals ϵt in the κt based on which yearly deviations et are
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All-Cause
for female

CoDa Common
Trend for fe-
male

All-Cause
for male

CoDa Common
Trend for male

Standard error
of κt

0.501 0.431 0.507 0.482

Table 4.6: Standard error of κt

Figure 4.15: Male cohort expected age at death interval

Figure 4.16: Female cohort expected age at death interval

simulated, CoDa Common Trend presented less volatility on κt, which could partly explain
the reason why CoDa Common Trend has narrower interval compared to All-Cause model.

Between CoDa Common Trend and CoDa Multi Trend, it can be observed that the
deviations are more important for the younger ages and lower for the elder ages for CoDa
Multi Trend than CoDa Common Trend. Indeed, CoDa Multi Trend also takes into
account the different evolution of each cause and consequently creates more uncertainties.

It can also be seen that CoDa Multi Trend presents a larger interval for female, espe-
cially at younger ages, which is in line with the observation in the simulated scenarios. Due



82 CHAPTER 4. COMPOSITIONAL DATA ANALYSIS

to the different age ranges impacted by certain causes such as Neoplasms-Prostate/Breast,
female display more volatility among young and middle ages.

4.5.1 Scenario analysis

The 0,5% scenario (which represents actually a 99,5% scenario in terms of Solvency II
shock) has been further analysed. The interpretability ability of CoDa models has been
explored by analyzing the scenario corresponding to the 0.5% level of cohort expectancy
at age 20, as it can be insightful to explore each cause’s proportion evolution throughout
the forecast horizon.

Figure 4.17: Best-estimate and Expected age at death at 0.5% level scenario of female
cohort aged 20 in 2020

Figure 4.17 and Figure 4.18 illustrate the cause proportion evolution for the female
and male cohort aged 20 in 2020, for the 0,5% level scenario, i.e. the scenario which repre-
sents the 0,5% quantile for the expected age at death is identified and analysed. It can be
observed that a significant increase of proportion in Neoplasm-Prostate/Breast for female
before 2070, therefore before the cohort reaches the age of 70. This explains the discrep-
ancy between the life expectancy of the scenario and the central trajectory. Above the
age 70 (the year 2070), causes related to neurologic system including Alzheimer-Dementia
and Neurologic-Other are the main source of the decline in female life expectancy.

Also, Drug-related and Alzheimer-Dementia occupy a major proportion after 40 years
for both female and male respectively in young-middle-ages and elder ages, this also shows
one of the limitations of CoDa model that despite coherent cause-specific mortality rates
forecast, certain cause-specific proportion may be dominant as well in long term forecast
horizon under the linear extrapolation method.
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Figure 4.18: Best-estimate and Expected age at death at 0.5% level scenario of male
cohort aged 20 in 2020
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Conclusion

This thesis explored the cause-of-death in a mortality risk modelling framework with three
modelling approaches and compared their respective advantages and limits regarding the
interpretability of the observed mortality experience, and suitability compared to the
common practice of mortality risk calibration.

The first tentative is to model each cause-of-death independently, which proves satis-
factory interpretability on the historical trend of each cause. Forecast by a linear extrap-
olation demonstrates incoherence on the aggregate mortality rates’ evolution, less visible
in the short term and more evident for long-term projection, as required in long-term
mortality risk modelling

As an alternative approach, this thesis then investigated Compositional Data analysis
(CoDa) application on cause-of-death modelling, which provides a more coherent cause-
specific forecast by imposing an aggregate level constraint, two variants of the CoDa model
were tested which all illustrate the capacity to output more coherent result.

In order to simulate future scenarios and build a prediction interval of aggregate
mortality rates, this thesis then proposed a method to impact aggregate level mortality
rates by analyzing cause-specific evolution uncertainties. CoDa models have shown more
coherent long-term cause-specific mortality rates forecast with respect to aggregate mor-
tality rates, their explanatory ability shed light on the contribution of each cause in the
mortality risk and it helps to understand the risk transfer mechanism within ages and
causes.

However, certain causes such as Drug-related and Alzheimer-Dementia could still be
dominant in proportions in the long-term forecast. According to CDC, from 2018 to 2019,
drug overdose deaths increased by nearly 5%, quadrupling since 1991. Over 70% of 70,630
deaths in 2019 were opioid-related. The same observation is found in the models employed
in the thesis.

Recent public policies have started to remedy drug-related overdose and companies
selling opioids have been sued in the USA. This impact should be considered in the
modelling approach.

Hence, this thesis could be further deepened, by applying expert judgement on each
cause-of-death to limit their evolution on a more rational scale. The impact on mortality
risk could consequently be defined as the result of the application of expert judgement.
Based on the CoDa models, one could obtain a coherent cause-specific forecast, in which
one could apply future mortality improvement correction from expert judgement. Another
solution could be to set up an upper boundary on cause-specific mortality rates, the
aggregate mortality rates will consequently change. The use of expert judgement shall
be objectively justified and is out of the scope of this thesis, hence the use of expert
judgement has not been discussed.

Some fundamental issues related to cause-of-death modelled remain to be solved,
such as data quality following the change of classification standard, deaths number of
each cause may not be stable due to the change of classification.

In conclusion, the direct application of cause-of-death modelling is deemed to be

85



86 CHAPTER 4. COMPOSITIONAL DATA ANALYSIS

premature without further adjustment and additional analysis, for the mortality risk as-
sessment. However, it can provide valuable insight on mortality trends and their evolution,
detect the main drivers of aggregated mortality risk and analyse extreme scenarios.
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Appendix A Cause-of-death mapping
list
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Appendix B Independent cause-specific
model parameters

Figure 19: Independent cause-specific model male βx,i
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Figure 20: Independent cause-specific model female βx,i
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Figure 21: Independent cause-specific model male αx,i
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Figure 22: Independent cause-specific model female αx,i

According to the parameters αx,i, it could be summarized that most of causes follow
the same age pattern as in All-cause model except that Drug-related demonstrates an
inverse major impacted age range. βx,i of causes all present more volatility than All-cause
model in particular Drug-related,especially in younger ages. Apart from the statistical
uncertainty of parameters, the low deaths number of cause in young ages is also subject
to this effect.
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Appendix C CoDa model forecast

Figure 23: Male cause-specific forecast at age 40
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Figure 24: Male cause-specific forecast at age 80
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Figure 25: Female cause-specific forecast at age 40
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Figure 26: Female cause-specific forecast at age 80
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