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Résumé

Ces dernières années ont vu une accélération croissante de la transformation numérique
de l’assurance, qui s’explique par plusieurs facteurs.

Tout d’abord, la prise de conscience par les dirigeants d’entreprises de l’importance des
données pour évaluer les risques de décès, dépendance, emprunteur, ... D’autre part, le
besoin d’infrastructure performante pour stocker, analyser, et gouverner des données
sensibles (contenant des informations personnelles) toujours plus volumineuses. Enfin,
la Covid-19 a été un facteur de prise de conscience très puissant et a fortement incité les
entreprises à massivement investir dans l’informatique pour rendre le télétravail possi-
ble, phénomène qui en s’étendant à la télémédecine rend la collecte de données de santé
numériques possible à une bien plus large échelle qu’on ne le pensait jusqu’alors.

Ces changements ont permis aux départements de gestion des sinistres et de souscrip-
tion de profondément repenser leurs systèmes en automatisant les tâches à faible valeur
ajoutée pour pouvoir se concentrer sur l’innovation : nouveau produits d’assurance,
partenariat avec des insurtechs et hôpitaux, services intelligents aux clients, ...

Dans un monde numérique collectant toujours plus de données (voitures connectées,
smart watches, ... ), les assureurs doivent se préparer à comprendre ces nouveaux
flux de données pour mesurer les risques et les prévenir. Ce mémoire propose donc
une construction de simulateur de séries temporelles biométriques (indice de masse
corporelle, tension artérielle systolique et diastolique) impactant le risque instantané
de mortalité.

A partir des données générées, l’étude montre que de simples modèles de machine learn-
ing adaptés à la modélisation de la mortalité donnent des résultats satisfaisants. Cepen-
dant, ces modèles de classification reposent sur une hypothèse forte d’indépendance
entre les observations enregistrées à chaque pas de temps.

Ce mémoire présente l’architecture d’un modèle de deep learning récurrent ainsi que son
implémentation en Pytorch, une librairie Python pour le deep learning. Ces modèles
séquentiels sont utiles pour des équipes de tarification afin de mesurer des sensibilités
du prix d’une couverture à l’évolution future du mode de vie d’un assuré (alimentation,
activité physique, stress, ...).
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Ce mémoire d’actuaire orienté recherche apporte un nouveau regard sur la modélisation
de la survie grâce aux réseaux récurrents appliqués à l’évolution du profil biométrique
d’un assuré. L’étude présente des résultats innovants de tarification adaptative au fil de
l’évolution de données biomédicales, plus proches des mortalités réelles que les modèles
statiques traditionnels. D’autre part, les modèles de mortalité présentés mesurent seule-
ment la mortalité instantannée en fonction de variables biométriques mais ne possèdent
pas de capacité prédictive sur les scénarios biométriques en eux-mêmes. La modélisa-
tion des séries temporelles des covariables pourrait être une solution pour prédire un
scénario probable d’évolution de la santé de l’assuré à partir d’événements disponibles
pour le tarificateur.

Mots Clés: Machine Learning, Deep Learning, Assurance-vie, Mortalité
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Abstract

Recent years have seen an increasing acceleration in the digital transformation of in-
surance, which can be explained by several factors.

Firstly, the awareness by business leaders of the importance of data to assess the risks
of death, dependency, borrower, ... Secondly, the need for an efficient infrastructure to
store, analyze, and govern sensitive data (containing personal information) that is in-
creasingly voluminous. Finally, the Covid-19 has been a very powerful awareness factor
and has strongly encouraged companies to massively invest in IT to make teleworking
possible, a phenomenon that by extending to telemedicine makes digital health data
collection possible on a much larger scale than previously thought.

These changes have allowed claims and underwriting departments to radically rethink
their systems by automating low-value tasks so they can focus on innovation: new
insurance products, partnerships with insurtechs and hospitals, intelligent customer
services, ...

In a digital world collecting more and more data (connected cars, smart watches...),
insurers must prepare themselves to understand these new data flows to measure and
prevent risks. This thesis therefore proposes a construction of a biometric time se-
ries simulator (body mass index, systolic and diastolic blood pressure) impacting the
instantaneous risk of mortality.

From the generated data, the study shows that simple machine learning models adapted
to mortality modeling give satisfactory results. However, these classification models are
based on a strong assumption of independence between the observations recorded at
each time step.

This paper presents the architecture of a recurrent machine learning model and its
implementation in Pytorch, a Python framework for deep learning. These sequential
models are useful for underwriting teams in order to measure the sensitivities of the
price of a coverage to the future evolution of the insured’s lifestyle (diet, physical
activity, stress, ...).

This research-oriented actuary’s thesis brings a new perspective on survival modeling
thanks to recurrent networks applied to the evolution of an insured’s biometric profile.
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The study presents innovative results of adaptive pricing over the evolution of biomed-
ical data, closer to real mortality than traditional static models. On the other hand,
the mortality models presented only measure instantaneous mortality as a function
of biometric variables but do not have predictive capacity on the biometric scenarios
themselves. Time series modeling of covariates could be a solution to predict a probable
scenario of the insured’s health evolution from events available to the underwriter.

Key Words: Machine Learning, Deep Learning, Life insurance, Mortality
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Note de Synthèse

En assurance-vie, les actuaires ont besoin d’estimer la probabilité de survie d’un as-
suré (habituellement par période annuelle, mais aussi trimestrielle ou à toute autre
fréquence) pour estimer le risque auquel ils s’exposent et proposer un tarif de prime
(Best Estimate) reflétant ce risque aussi précisément que possible.

L’approche traditionnelle est la construction de tables de mortalités par âge, duration,
sexe et usage du tabac. L’inclusion d’un plus grand nombre de variables biomédicales
(Indice de Masse Corporelle, pression artérielle, ...) ou liées à l’activité physique (ry-
thme cardiaque, nombre de pas quotidiens, ...) dans les systèmes de souscription ont
nécessité l’utilisation de modèles statistiques paramétriques (régression de Cox) puis
non-paramétriques (Cox-xgboost, forêts aléatoires de survie) pour évaluer le risque de
mortalité du client.

L’objectif principal de ce mémoire est d’étudier et modéliser des séquences d’événements
ayant un impact sur la mortalité d’un assuré. L’état de santé de l’assuré peut subir des
changements importants au cours du temps : perte de poids, stress lié a un changement
de situation professionelle, cholestérol élevé associé à une alimentation trop riche, etc.
Pour ce faire, il est essentiel de s’interesser aux formes temporelles des observations
biomédicales et mesurer leur impact.

Les réseaux de neurones récurrents ont été récemment introduits pour étudier des
phénomènes séquentiels, notemment pour l’analyse des séries temporelles ou pour le
traitement du langage naturel. Plus précisément, les réseaux de mémoire à long terme
(long short-term memory, LSTM) démontrent une capacité à propager des informations
passées sur des pas de temps futurs.

Ce mémoire porte sur l’implémentation dans un cadre assurantiel du modèle RNN-Surv
introduit dans l’article RNN-SURV : A Deep Recurrent Model for Survival Analysis de
Giunchiglia et al. paru en 2018. Le modèle calcule d’abord à chaque pas de temps une
représentation cachée (embeddings), de dimension inférieure, des variables en utilisant
des couches denses. Ce vecteur de caractéristiques est ensuite introduit dans un réseau
de mémoire à long terme, qui produit une estimation de la valeur de la fonction de
survie à chaque pas de temps en fonction des données actuelles et passées. Enfin, les
estimations des probabilites de survie a chaque pas de temps subissent une transfor-
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mation lineaire produisant un score de risque utilisé comme estimateur de risque pour
l’individu.

Ce modèle a la spécificité de fournir deux sorties, qui sont optimisées dans la phase
d’apprentissage à l’aide de deux fonctions de perte linéairement combinées. Cette con-
figuration rappelle la structure de l’apprentissage multi-tâche, qui a montré qu’optimiser
des multiples tâches annexes, indirectement corrélées à l’objectif principal, améliorait
en fait les performances sur chacune des tâches individuelles. De même, ici, nous ne
nous concentrons pas sur le calcul d’un score de risque mais plutôt sur les probabil-
ités de survie, ce score de risque (optimisé à l’aide d’une limite supérieure de l’indice
de concordance de Harrell) garantit que les individus présentant différents niveaux de
risque soient correctement ordonnés par le modèle, tandis que les probabilités de survie
réelles sont optimisées à l’aide d’une perte d’entropie croisée (binary cross-entropy loss),
modifiée pour prendre en compte la censure.

Une limite du modèle actuel est qu’il n’infére pas l’évolution des covariables médicales
à des pas de temps où elles ne sont pas observées (très souvent, les suivis médicaux sont
irréguliers). Cependant, le modèle donne de bons résultats par rapport aux méthodes
statiques traditionnelles.
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Executive summary

In life insurance, actuaries need to estimate the probability of survival of a policyholder
(usually on an annual basis, but also quarterly or at any other frequency) in order to
estimate the risk to which they are exposed and to propose a premium rate (Best
Estimate) reflecting this risk as accurately as possible.

The traditional approach is to construct mortality tables by age, duration, gender
and tobacco use. The inclusion of more biomedical variables (Body Mass Index, blood
pressure, ...) or physical activity variables (heart rate, number of daily steps, ...) in
the underwriting systems required the use of parametric (Cox regression) and then
non-parametric (Cox-xgboost, randomized survival forests) statistical models to assess
the client’s mortality risk.

The main objective of this thesis is to study and model sequences of events that have
an impact on the predicted mortality of an insured. The health status of the insured
may undergo significant changes over time: weight loss, stress related to a change in
professional or social situation, high cholesterol associated with a rich diet, etc. To
do so, it is essential to take into account the evolution of biomedical parameters of
interest as well as the speed of this evolution and their possible correlation with other
concomitant changes: weight gain of 20kg over one year or one month, associated or
not with a rise in cholesterol or blood pressure for example.

Recurrent neural networks have recently been introduced in the study of all sequential
phenomena, from time series analysis to natural language processing. More specifically,
long short-term memory (LSTM) networks demonstrate an ability to propagate past
information over future time steps.

This dissertation focuses on the implementation in an insurance framework of the model
proposed in the 2018 paper RNN-SURV: A Deep Recurrent Model for Survival Analysis
by Giunchiglia et al. The model first computes at each time step a lower-dimensional
hidden representation (embeddings) of the covariates of interest using dense layers.
This feature vector is then fed into a long-term memory network, which produces an
estimate of the survival function value at each time step based on current and past
data. Finally, the survival function values are linearly combined to compute a unique
individual-specific risk score, which is used to obtain a risk ranking of the insured.
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This model has the specificity of providing two outputs, which are optimized in the
learning phase using two linearly combined loss functions. This setup is reminiscent of
the structure of multi-task learning, which has shown that optimizing multiple ancil-
lary tasks, indirectly correlated to the main objective, actually improves performance
on each of the individual tasks. Similarly, here we do not focus on calculating a risk
score but rather on survival probabilities, this risk score (optimized using an upper
bound on the Harrell concordance index) ensures that individuals with different lev-
els of risk are correctly ordered by the model, while the actual survival probabilities
are optimized using a binary cross-entropy loss, modified to take censoring into account.

A limitation of the model is that it theoretically provides no explicit constraint on the
survival probabilities which must be strictly decreasing, although in practice we observe
that the model mostly captures this phenomenon and produces decreasing survival
probability estimates. A variant that predicts the hazard rate may be an alternative,
but it has not shown any significant improvement in predictive performance. Similarly,
there are different ways to infer the evolution of medical covariates at time steps where
they are not observed (very often, medical follow-ups are irregular). However, the model
performs well compared to traditional static methods.

9



Remerciements

Je tiens à remercier SCOR Global Life pour m’avoir donné l’opportunité de réaliser
cette étude passionnante et enrichissante.

Je tiens à remercier Antoine Ly pour ses conseils et son suivi tout au long de ce mé-
moire, Christian-Yann Robert pour ses recommandations de modélisation biométrique,
Roberto Castellini pour ses remarques judicieuses sur les différentes méthodes de deep
learning envisagées.

Enfin, mes remerciements vont tout particulièrement à Antoine Chancel, sans qui ce
mémoire n’aurait jamais vu le jour ni n’aurait atteint sa qualité de contenu, pour son
suivi dévoué tout au long du stage, ses remarques judicieuses, sa présence, ses explica-
tions et surtout ses idées toutes plus pertinentes les unes que les autres à explorer.

10



Contents

Resume 3

Abstract 5

Note de Synthèse 7

Executive summary 9

1 Study framework 14
1.1 The life insurance industry . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Main departments and roles in an insurance company . . . . . . 15
1.1.2 New Data and Ethics Challenges . . . . . . . . . . . . . . . . . 16

1.2 The Reinsurance Industry . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Types of Reinsurance . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Reflexions on event-based life insurance . . . . . . . . . . . . . . . . . . 19
1.3.1 Insurance context . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Medical follow-up of a patient . . . . . . . . . . . . . . . . . . . 20
1.3.3 Continuous Underwriting . . . . . . . . . . . . . . . . . . . . . . 23
1.3.4 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.5 Capital requirement . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.6 Prevention care . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Actuarial Science Tooling 26
2.1 Survival Analysis Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Survival Analysis in life insurance . . . . . . . . . . . . . . . . . 26
2.1.2 Censoring and truncation . . . . . . . . . . . . . . . . . . . . . 28
2.1.3 Quantity of interest . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Exposure derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Initial Exposure and Balducci hypothesis . . . . . . . . . . . . . 34
2.2.2 Central Exposure and Constant hazard function . . . . . . . . . 35
2.2.3 Modeling our data using exposure . . . . . . . . . . . . . . . . . 37

2.3 Mortality modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11



2.3.1 Non-parametric estimators . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Parametric extimators . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Machine learning models in survival analysis . . . . . . . . . . . . . . . 46
2.4.1 Cox-Model adaptations . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Survival Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Data Generation 54
3.1 Assumptions and key criteria . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Data generator schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 From an initial distribution... . . . . . . . . . . . . . . . . . . . 55
3.2.2 ...To a dynamic evolution... . . . . . . . . . . . . . . . . . . . . 58
3.2.3 ...Ending in Death or Censorship . . . . . . . . . . . . . . . . . 60

3.3 Descriptive statistics of the dataset . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Initial distribution . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Entire dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Deep Learning in Survival Analysis 69
4.1 Deep Learning in a word . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Gradient Descent and Back-Propagation . . . . . . . . . . . . . 72
4.1.4 The Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Deep Learning for Sequential Data . . . . . . . . . . . . . . . . . . . . 76
4.2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . 78

4.3 Survival deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Cox Proportional Hazards Models . . . . . . . . . . . . . . . . . 80
4.3.2 Static Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Recurrent Deep Learning Models . . . . . . . . . . . . . . . . . 83

4.4 RNN-SURV: a Deep Recurrent Model for Survival Analysis . . . . . . . 84
4.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.2 The Concordance Index . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3 Censored Cross-Entropy Loss . . . . . . . . . . . . . . . . . . . 93
4.4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.5 Hyper-parameters cross-validation . . . . . . . . . . . . . . . . . 100

5 Pricing applications and scenarii 101
5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

12



5.2 Models Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 RNN-Surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Models Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Scenario Formulation . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Central health scenario . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Increasing BMI scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 Decreasing BMI scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Conclusion 111

Bibliography 118

13



Chapter 1

Study framework

What is an Actuary ?

According to Investopedia1, "an actuary uses math and statistics to estimate the fi-
nancial impact of uncertainty and help clients minimize risk." His activities cover a
large panel of statistical tooling, like calculating the Best Estimate of a risk (as in
life insurance for example) or trying to market new emerging risks (cybersecurity or
terrorism for example). He can be found in an insurance or reinsurance company as
well as in a traditional financial department (of a bank for example), an insurtech or
fintech, or a research and development department. Very often, his work involves deal-
ing with regulatory compliance issues such as the European legislation Solvency 2, or
accounting responsibilities such as calculating the actuarial reserves in order to face
upcoming risks.

1.1 The life insurance industry

Life insurance is a contract between a policy holder and an insurance company, where
the insurer commits to paying a designated beneficiary (wife, children, charity...) a
fixed or variable sum of money upon the death of an insured person (very often the
policy holder). Depending on the contract, other events such as critical illness can also
trigger payment. The policy holder typically pays a premium, either regularly or as
one lump sum. The nominal can be a predefinite amount (e.g. $1million), depending
on conditions (e.g. doubled in case of accident) or variable (e.g. a fixed number of stocks
from a certain company, without prior knowledge of the value these stocks will bear at
the death of the insured).

The first life insurance policy was proposed by the Amicable Society for a Perpetual
Assurance Office founded in London in 1706 by William Talbot and Sir Thomas Allen,

1https://www.investopedia.com/articles/professionals/090513/day-life-actuary.asp
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and initially recorded about 2,000 members. Each member between the ages of twelve
to fifty-five would pay a fixed annual payment (premium), in exchange for earning
shares, from one up to three depending on the member’s age. At the end of the year
a portion of dividends was divided among the wives and children of the deceased
members, proportionally to the shares owned by the deceased members.

The life industry became more complex as the modern life insurance industry offers
now all kinds of products covering death events or other hazards related to the health
condition of the insured. The main products are covering Mortality, Critical Illness,
Medical Expenses, and Longevity (Pension).

Modern life insurance bears some similarity to the asset-management industry, and
life insurers have diversified their product offerings into retirement products such as
annuities. Life insurance policies can be divided into two main categories :

• Protection policies: designed to provide a benefit, typically a lump-sum pay-
ment, in the event of a specified occurrence, often the death of the policy-holder.

• Investment policies: these policies can be seen as financial instruments, their
main purpose is to increase a capital constituted by regular or single premiums
and on which some interest is calculated.

1.1.1 Main departments and roles in an insurance company

The life insurance industry collects insurance premiums and invests in assets globally
that can result in systemic risk for the economy. The recent regulations, such as Sol-
vency II, force insurers, and reinsurers to increase their capital requirements and to
increase their knowledge of the risks to reduce the chances of bankruptcy. In this spirit,
the insurers’ structure has been rethought. To ensure the economic prosperity of the
company, four main departments described below work closely together.

Underwriting department role is to provide acceptance or rejection of an insurance
application. To do so, underwriters assess the risk based on the information collected
from the life insurance applicant. If the risk appears to be high but acceptable, an extra
premium may be demanded. This department has a key role as it avoids the insurer to
be anti-selected and insured the risk covered corresponds to premiums collected.
To grow its market share, an insurer endeavors to reduce the complexity of the under-
writing process. Accessing information from a client is expensive. This cost includes
the easiness to access to information. For example, asking for the age of a person is
easier than collecting blood measurements. On the other hand, an additional accurate
piece of information improves insurer knowledge of the risk.
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The Experience Analysis (EA) department is in charge of monitoring the in-force
portfolio. By comparing the observed claims with the expected ones, the team report
about the health of the business. The team also provides insights into the assumptions
that should be revised to better reflect the risk. More generally, the Experience Anal-
ysis team provides data and insights about the risk assumptions considered in pricing
and valuation.

The Research & Development department is providing support to other teams
for risk assessment. The team provides guidance and best practices to set assumptions
for various products and risks. When data is not available internally to assess the risk,
the R&D team often formulate recommendations based on external literature and data
sources. In particular, R&D is responsible to estimate future trends and estimation of
rare events (1-in-200 years scenarios).

The Pricing department works closely with the EA and R&D to set an adequate
price for the insurance products. The pricing team relies on EA and R&D inputs on
risk to forecast future claims. Considering other economic and financial assumptions
the team determines the premiums need to meet the profitability targets. As the price
competition between insurers or reinsurers is high, the pricing teams work closely with
the underwriting teams to make sure that the underwritten business is profitable.

1.1.2 New Data and Ethics Challenges

Thanks to the technological improvement and data storage capacity, information con-
sidered for risk assessment increased a lot in recent years. For instance, nowadays
life insurance applicants are required to share, besides their age, a significant part of
their medical history, financial situation, profession, etc. As the available information
increases, new challenges for insurance companies and actuaries are arising, namely
extracting and analyzing efficiently information from a large amount of (often unstruc-
tured) data to better assess the risk.

In the same view, the use of big data raises growing ethics concerns over discrimi-
nation possibilities : for example, the intake of the profession or home address could
be considered discriminatory against some minorities that are widely dominant across
harder jobs, for example with frequent exposure to carcinogenic chemicals (construc-
tion workers...), or living in riskier neighborhoods or with less access to quality food
supplies.
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In a different perspective, someone who experienced serious health problems during his
childhood or early youth could find himself being discriminated against at subscription
of an insurance contract for his whole life, his premium being weighted by that past
health hazard. In the European Union, important legislation exists (e.g. AERAS in
France) to guarantee a right to be forgotten in such situations : for a cancer before 21,
after 5 years without relapse, and for a cancer after 21, after 10 years without relapse.
It has recently been proposed to lower the timeline at 5 years without relapse for all
population.

1.2 The Reinsurance Industry

1.2.1 Presentation

Reinsurance is a coverage that an insurance company purchases from another one
(either a specialist reinsurance company, which only undertakes reinsurance business
or another insurance company) to protect itself, partially or totally, from the risk of a
major claim events. For example, an insurance company may provide home insurance in
case of a plumbing-induced water damage, but might be unable to cover simultaneous
claims for 100 houses in the same neighborhood due to a major flooding event. With
reinsurance, the company passes on ("cedes") some part of its own insurance liabilities
to the reinsurer. The company that purchases the reinsurance policy is called a "ceding
company" or "cedant".

The main purpose of reinsurance is to allow insurance companies to remain solvent after
major claim events, such as major disasters like hurricanes and wildfires, or a mortality
peak due to a major epidemic. Almost all insurance companies have a reinsurance
program to reduce their loss exposure : the insurer can then constitute bigger portfolios
than would otherwise be allowed by the regulator, being able to take on more risk
because some of it is now transferred to the reinsurer. This is likely to reduce the
amount of capital needed to provide coverage. Therefore, in addition to its basic role in
risk management, reinsurance is used to reduce the cedant’s capital requirements.

Reinsurance can make an insurance company’s results more predictable by absorbing
large (and rare) losses, thus truncating the tail of the loss distribution. The risks are
spread, with the reinsurer or reinsurers bearing some of the loss incurred by the in-
surance company. The income smoothing arises because the losses of the cedant are
limited and highly predictable (it is easier to forecast results regarding high-frequency,
low-cost events than low-frequency, high-cost events). This fosters stability in claim
payouts and caps indemnification costs.
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The focus of reinsurance on rare risks or extreme events gives the reinsurer an expertise
that the insurer may want to use for setting an appropriate premium, in regard to a
specific risk or when launching a new product with no known performance history. The
reinsurer would also prefer to apply this expertise to the underwriting process in order
to protect its own interests. By choosing a particular type of reinsurance method, the
insurance company may be able to create a more balanced and homogeneous portfolio of
insured risks. This would make its results more predictable on a net basis (i.e. allowing
for the reinsurance). This is usually one of the objectives of reinsurance arrangements
for the insurance companies.

The insurance company may be motivated by arbitrage in purchasing reinsurance cov-
erage at a lower rate than they charge the insured for the underlying risk, whatever
the class of insurance. The reinsurer may be able to cover the risk at a lower premium
than the insurer :

• The reinsurer may have a greater risk appetite than the insurer.

• The reinsurer may have some intrinsic cost advantage due to economies of scale
or some other efficiency.

• Reinsurers may operate under weaker regulation than their clients. This enables
them to use less capital to cover any risk, and to make less conservative assump-
tions when valuing the risk. Even if the regulatory standards are the same, the
reinsurer may be able to hold smaller actuarial reserves than the cedant if it
thinks the premiums charged by the cedant are excessively conservative.

• Reinsurers will often have better access to underwriting expertise and to claims
experience data on extreme events than insurers have, enabling them to assess
the risk more accurately and reduce the need for contingency margins in pricing
the risk.

• The reinsurer may have a more diverse portfolio of assets and especially liabilities
than the cedant. This may create opportunities for hedging and lower the capital
requirements.

To mitigate the counterparty risk, many reinsurance placements are shared between
a number of reinsurers. Using game-theoretic modeling, Professors Michael R. Powers
(Temple University) and Martin Shubik (Yale University) have argued that the number
of active reinsurers in a given national market should be approximately equal to the
square-root of the number of primary insurers active in the same market. Econometric
analysis has provided empirical support for the Powers-Shubik rule.
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1.2.2 Types of Reinsurance

There are two methods of reinsurance:

• Facultative Reinsurance, which is negotiated separately for each policy. It is
normally purchased as complement for individual risks not covered by other rein-
surance treaties, for amounts in excess of the monetary limits and for unusual
risks. Underwriting expenses are higher for such business because each risk is
individually underwritten and administered ; furthermore, risk mitigation is dif-
ficult in this setup. However, as the reinsurer can separately evaluate each risk
they take on, the contract can be priced more accurately.

• Treaty Reinsurance means that the cedant and the reinsurer enter a reinsur-
ance contract which covers a specified share of all insurance policies issued by
the cedant. The reinsurance treaty may force the reinsurer to accept all poli-
cies within the scope ("obligatory" reinsurance), or it may allow the insurer to
choose which risks it wants to cede, with the reinsurer obligated to accept them
("facultative-obligatory" reinsurance). There are two types of treaty reinsurance
:

- Under proportional reinsurance, the reinsurer’s share of the risk is applica-
ble to each individual policy ; he takes on a share of each policy’s risk, in exchange
of the same share of premiums. In addition, he might allow a "ceding commis-
sion" to the insurer to cover the uderwriting costs. Proportional reinsurance may
be quota share (a fixed percentage of each policy) or surplus reinsurance (the
cedant retains the full amount of each risk up to a maximum called "retention
limit", and the excess loss is reinsured).

- Under non-proportional reinsurance the reinsurer’s liability is based on
the aggregated claims ; he pays out if the total claims suffered by the insurer in a
given period exceed a stated amount ("retention" or "priority"). The main forms
of non-proportional reinsurance are excess of loss and stop loss.

1.3 Reflexions on event-based life insurance

1.3.1 Insurance context

The life insurance industry was created to cover risks associated to the life of individ-
uals. The insurer promise the policy holder that one or many beneficiaries will receive
a payment based on an event (ie. death, critical illness). Estimating the price of the
future promise is a difficult exercise that requires the knowledge of the future evolution

19



of the characteristics of the individual at risk. To tackle this issue, life actuaries and
statisticians developed many techniques to estimate the survival probability of a new
policy-holder based on the historical data collected by the insurance company. The
estimated survival probability help life insurers to have an indication the price of the
policy and the reserves attached to the contract.

Traditionally, life insurance companies know a client based on an online or hand written
application. During the underwriting stage, more information can be collected : phar-
maceutical history, client interview, MIB, Laboratory report ... Over the past decade,
life actuaries endeavored to deal with insurance and underwriting portfolio with more
individual features and more applications / policies. This inflation of data leads to nu-
merous issues with parametric techniques : complex non linear relationships between
the features, gradient descent may not work in the context of big data (inversion of
very large matrices), ...

During the past 5 years, data streams are emerging with the apparition of the internet
of things and the improvements of health care IT systems. The connected objects collect
trough wearable (smart watch, smart pants, smart glasses, ...) real time data : heart
pulse, distance, steps number, calories burnt, ... On the other hand, some insurtechs
develop new electronic system that are able to centralize medical reports of many
GP in a single application. Partnering with those new tech companies, the insurance
industry is also able to monitor the physical activity, the quality of sleep or the medical
condition of a client through the lifetime of the policy. Understanding the improvements
or deterioration of the policy holder could an insurer to prevent any unfortunate event.
Also, the insurer may propose new insurance coverage with discounted premium if the
insured health condition improve. Based on the seriatim data observed for a particular
individual, the insurance company need to project the best estimate of the future
evolution of the covariates and the related mortality predicted by the model every
year.

1.3.2 Medical follow-up of a patient

Nowadays, health status data is becoming more numerous and increasingly available
from a variety of sources: medical reports issued by a general practitioner, number of
steps per day and heart beat collected with a smart watch, screen time measured with
phone or computer, sleep analyzer, etc.

Life insurers traditionally request applicants to fill a medical questionnaire including
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Figure 1.1: Events
certain medical history. Life underwriters can also gather more information : MIB
(Motor Insurers’ Bureau) records, medical exam, blood or urinary samples analysis,
pharmaceutical history, social media posting, or any other evidence to avoid fraud or
disclosure. The insurer can also monitor a change of marital status through a mobile
or a web application. Later, a claim may be submitted to the insurer with an eventual
payment. The figure 1.1 represents a sequence of the events.

What is often crucial, medically-speaking, is the evolution of given parameters. Here
are a few examples.

Smoking Evolution

By incorporating national UK mortality rates for lung cancer in males, the cumulative
risk of death from lung cancer by age 75 among current smokers was estimated at
16%, rising to 24% for current smokers of at least 25 cigarettes per day. The benefit of
quitting smoking was demonstrated with cumulative risks of lung cancer of 10, 6, 3 and
2% for men who stopped smoking at ages 60, 50, 40 and 30, respectively. It is therefore
apparent that smokers who quit, even well into middle age, avoid a large proportion of
their subsequent risk of lung cancer.

Therefore, knowing that a policy-holder is a smoker at year k is only a very partial
information on his probability to develop lung cancer in 10 or 20 years, it would bring
much more information to have regular follow-ups telling us, for example, if the policy-
holder keeps smoking his entire life, or quits smoking at year k+1, or k+10. The impact
of the evolution of that habit on the likelihood to develop lung cancer is essential to
be incorporated in our survival models, as a static measure is not an accurate-enough
information on the probability of lung-cancer-related death.
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Figure 1.2: Body Mass Index Chart
One can even mention the trickier adverse-selection effect : for long-time smokers,
having quitted smoking is not always a good sign, as it is often an indicator that the
policy-holder has experienced very severe health issues forcing him to stop smoking.
Therefore, capturing the overall impact of the evolution of smoking habits is a delicate
matter.

BMI evolution

Another example is the evolution of a person’s weight, or his body mass index (BMI),
but as the height remains constant once adulthood is reached this is equivalent. The
body mass index is a person’s weight in kilograms divided by his squared height in
meters. BMI screens for weight categories that may lead to health problems, see figure
1.2. Even more than with smoking habits, the evolution of the BMI can be a very good
indicator of a policy-holder’s health improvement or deterioration.

Let’s take, for example, an adult male of 180cm, weighting 120kg on January 1
st, year

k. He has a BMI of 37, and is in type II obesity (see figure 1.2), therefore is at higher
risk of stroke, coronary disease, heart disease and a lot of other health issues than the
general population. Were his BMI to increase in any proportion, it could probably only
have negative effects on his long-term health prospects. Now, if after great effort, 1 year
later on January 1

st, year k + 1 he only weighs 90kg, his BMI has fallen at 27.8 and
he is back in the slightly overweight, non-obesity range : that is probably very positive
for his survival probability.
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But what if this 30kg weight loss had occurred in 1 month rather than 1 year, would
it be a good sign ? It would much more likely be an indicator that the policy-holder
is experiencing serious health problems (cancer, depression...), or at least that this
massive weight loss must have induced severe nutritional deficiencies. Similarly, if after
taking 1 year to fall at a BMI of 27.8, it takes him just one month to climb back at
the initial level (or even higher), it is not at all as good a sign for his life expectancy
compared to having maintained his weight loss.

Therefore, BMI is a very complex indicator of the overall health status of an individual,
and its evolution, though complex to analyze, would provide much better insight in the
survival probability.

To take into account the complexity of the relationship between the evolution of some
medical features and the short-, mid- or long-term survival probability of a policy-
holder, some insurance companies propose bonus-malus programs similar to those in
car insurance, based on the policy-holder medical, dietary and physical habits, e.g. you
could have a minoration of your insurance premium if you walk an average of more
than 10,000 steps a day, a majoration if you start to smoke, or for over-70 you could
have a yearly bonus for getting the flu shot, or the covid vaccine, etc.

1.3.3 Continuous Underwriting

Life insurance providers are constantly trying to improve the underwriting process to
reduce policy risks. Automated rule engines have increased the accuracy and speed
of underwriting for a specific point in time, but providers are still essentially making
educated guesses on how a person will age for the next fifty years. Furthermore, that
assumption is subjected only to the perceived health condition at time of underwriting,
and the insured could modify his habits for the better or the worse, what would affect
his survival probabilities. Example : he could start / quit smoking ; change his nutritious
habits ; move to a more/less polluted area...

Continuous underwriting means that data can be analyzed before, during and after the
policy is underwritten, to minimize insurers’ risk by a dynamic adaptation of premiums
to the insured’s behavior, measured by the tremendous amounts of customer data
generated by the Internet of Things (IoT)/wearable technology, customer engagement
platforms and social media.

Life insurers would be able to provide a comprehensive, individualized risk assessment
over time, rather than relying on small and incomplete sets of data to guess how
an individual will age. Utilizing this data, insurers can reward healthy behavior, like
quitting smoking, getting vaccinated or walking more than 10,000 steps a day, and
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build a richer underwriting experience that can be fed back into new products being
developed.

Continuous underwriting would introduce dynamic risk selection, and provide an in-
centive for insureds to take care of their health. To that purpose, the contract would
specify that the data can be collected from the insured and through which channel (e.g.
a connected watch measuring sleep time, or a phone application counting daily steps,
...) in exchange for lower premiums.

1.3.4 Pricing

We would like our pricing strategy to be reflective of the insured’s initial survival prob-
abilities, but also to be updated depending on an eventual change of health condition.
More explicitly, if the insured respects a good lifestyle, we would like the new price
to be reflective both of all past events of the insured but also of his updated survival
probabilities given the change in his habits.

Example : at time of underwriting, a 40-year-old man has a BMI of 37 (type II obesity).
This corresponds to a weight of 120kg for a 1.80m tall person. The initial estimation
of his risk is driven by obesity-induced comorbidity (higher cardiovascular risk among
others). His premium is therefore higher than it would have been with a BMI of 27
(equivalent to 87.5 kg).

Now, this same person goes a diet and starts practicing a regular physical activity.
Over the following year, he loses weight steadily until his BMI stabilizes at around
27 (slightly overweight but below the type I obesity threshold of 30). This naturally
improves his chances facing most cardiovascular diseases, diabetes, etc. Therefore, we
would like to lower his forecast mortality risk and update his premium to be reflective
of that improved health condition.

However, if that same weight loss of more than 32kg happened not over a year, but
over a month, the conclusion would likely be very different. Indeed, a massive and
sudden weight loss is more often the sign of a deterioration of one’s health condition
(depression, cancer, etc), or would at the very least necessitate such strict fasting that
it would cause severe nutritional deficiencies. Therefore, it is essential to update the
survival probabilities in a dynamic manner, taking into account the history and timing
of medical features evolution, and not only in a static, instantaneous manner.
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1.3.5 Capital requirement

In order to determine his capital requirements, the insurer has to provide a best estimate
of his liabilities to the regulator. It is also essential for managing the risk the company
is undertaking to have a clear evaluation of the necessary capital to face the upcoming
claims in the short- and long-term future, to estimate if this risk is tenable and at what
maturity to invest the collected premiums.

The evalutation of the required capital can be made based on the events of all the
insureds, but it would be relevant for future claims to calculate a projection of the
portfolio population lifestyle and likely mortality evolution. For example, relying on
past obesity-related comorbidities (diabetes, cardiovascular diseases, etc) to predict
the future might be off-target since it is largely documented that obesity is on the
rise worldwide, from 6% of the adult population in the early 1980’s to 13% in 2016,
and this trend is not likely to slow down, let alone reverse. Developed economies, that
also happen to be at the core of the life insurance business, are particularly subject
to the abundance of low-cost, highly-processed industrial food driving the obesity epi-
demic.

1.3.6 Prevention care

Integrating a prevention approach in continuous underwriting would help early health
risk detection, thus orienting care and efforts very early and avoiding a lot of the
costly and much more hazardous long-term consequences of a lack of screening or
prevention. What’s more, connecting insureds with a phone application that would
encourage healthy eating and regular physical activity by promising premium discounts
could be a powerful incentive to change habits towards a healthier global behavior,
improving forecast survival probabilities in a very tangible, measurable way through
the electronic device.
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Chapter 2

Actuarial Science Tooling

2.1 Survival Analysis Theory

2.1.1 Survival Analysis in life insurance

Survival Analysis is a branch of statistics that focuses on analyzing the waiting time
before occurrence of an event, typically death but also disease incidence, termination
of an insurance contract, recovery, or any designated event of interest that may happen
to an individual. The time may be measured on a different scale such as years, months,
or days from the beginning of the follow-up of an individual until the event occurs.
The time variable is usually referred to as survival time because it gives the time that
an individual has “survived” over some follow-up period.

A standard term life insurance policy of nominal N is defined by a contract where a
subscriber (policy-holder) pays a premium π, in exchange of an amount N shall be paid
to a beneficiary at occurrence of an event, very often the death of the policy-holder.
The main purpose of life insurance is to estimate, as accurately as possible, the optimal
value of the premium π depending on a number of medical information regarding the
subscriber : age, personal and family medical history, body mass index (BMI), average
daily sport activity... Therefore, modeling biometric risk, i.e. modeling the duration
between the application submission date and claim occurence, is essential in the life
insurance industry as it impacts pricing, reserving, and solvency assessments.

Several variants of this standard contract exist, where the trigger element is not death
but occurrence of a severe illness or accident (e.g. cancer), but the general idea being
the same we will focus on the study of lifespan. The three main durations of interest
in the life insurance industry are :

• Life span, the duration before death of the insured,

• Disability duration, the period an insured will remain disabled (before death or
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recovery),

• Autonomy (not disabled) duration, the duration before either death or loss of
autonomy.

For the computation of premiums and reserves, one may not limit the modeling to a
binary classification problem (claim occurrence). Indeed, it is important to estimate
the event occurrence probability at any time for the whole duration of the contract : in
other words, we seek to predict the claim probability for a given period of time, which
is the reason why it is important to master survival analysis theory.

Another important reason why we may wish to estimate claim occurrence probabilities
as exactly as possible is to give accurate estimates to the underwriting department, that
needs to classify insurance applicants in bad or good risk categories on their risk profile,
meaning being able to order applicants based on their probability of claim occurrence.
Besides, the development of more precise models contributes to being more inclusive, as
we may derive a price even for a very risky individual. Thus it enables to sell products
to clients, who would have been excluded from the portfolio in the past.

Life insurers need to estimate life duration to bring out risk factors. Predicting time to
event requires a specific modeling approach called Survival Analysis. However, survival
data is particularly difficult to collect : contrarily to instantaneous data, such as weight
or age, that can easily be obtained, the constitution of a survival database faces an
important issue, which is the duration. Very often, survival analysis studies span over
years, if not decades ; this leads to facing important issues regarding the integrity of
the data, as is explained in the following.

Let’s say we have several individuals for whom we want to predict the death date. For
example, we want to study the survival of cancer patients from the date of diagnosis.
These individuals, in the case of follow-up of a cohort over a long period of time (as
is necessary in survival analysis), may be subject to censorship, that is to say, some of
them might leave the country, stop showing up at doctors’ follow-up appointments, or
die of another cause than the one being studied.

For example, among 10,000 cancer patients over a decade, statistically speaking, several
might probably move abroad, or one might likely die of a car accident during the study’s
course (the US car accidents death rate was of 12 per 100,000 in 2019) ; this death
would then be treated as censorship since it has on principle nothing to do with the
scope of the study. More precisely, it is designated as a competing risk : a risk which
has the same outcome as the one under study (death), and therefore prevents the
observation of the event of interest.

27



As survival studies are quite extended in time, typically several years, censorship rates
might be high. Finally, one has to end the study at some point : the remaining indi-
viduals who are still not dead at that point then get censored.

For censored individuals, we don’t have a death date, but we still have an information
: we know that they lived at least until a certain point, which is better than having no
information at all.

It would be foolish to simply discard censored individuals : in the study of cohorts
over a very long period, they are likely to represent a consequent proportion, if not the
majority, of the subjects, so that would drastically reduce the size of our cohort.

What’s even worse, it would introduce a considerable bias towards high mortality:
indeed, individuals surviving longer are naturally more likely to be censored at some
point (since they are present in the study for longer). Inversely, someone dying right
after the beginning of the study would not have had the time for some censorship to
happen. In conclusion, discarding censored individuals would lead to overestimating
mortality rates, or underestimating survival times.

Similarly, we couldn’t either consider censorship dates as death dates : as the individ-
uals are still alive at this point, it would also lead to underestimating survival times,
overestimating death rates.

Therefore, it is necessary to use a metric that takes into account censored individuals
information as partial, yet significant information, yet not distorting it by granting it
the same status as complete survival information from other individuals.

The main specificity of survival data is censoring. Indeed, most of the time survival du-
ration is only partially observed. Because of it, different approaches must be considered
to include this specificity. Two main modeling strategies exist to take censoring into
account: fitting specific models to raw survival data or modifying the data structure to
be able to apply standard models.

This chapter will introduce the survival analysis theory: the data challenges and the
modeling strategies, on which Machine Learning modeling relies.

2.1.2 Censoring and truncation

A major problem n survival analysis is the fact that the period of observation can be
impossible to directly measure for many individuals i. Indeed, survival data by defini-
tion necessitates very long observation periods, and by the time death occurs multiple
events could have happened that would remove individuals from the observation frame-

28



work. For example, if we are studying a population of breast cancer patients, since this
diagnostic has a rather good prognostic (survival rate of 85% after 5 years), it is very
likely that we won’t be able to observe all death dates :

• Some people might not be dead by the time we close the study ;

• Some people might die of other causes (suicide, accident, heart attack ...) ;

• Some people might leave the study (move abroad, change doctor...) ;

• IT system failure during records...

These are called Censoring and Truncation. For such individuals, we only know that
they survived for at least Ci, i.e., our actual observation is

(Yi, δi) = (min(Ti, Ci),1 [Ti ≤ Ci])

In other words, we don’t observe the death date Ti for all individuals, but we observe
both when they leave the study Yi and why (δi = 1 if that corresponds to a death,
δi = 0 if it is a censorship).

Definitions

The main limits to obtaining information in a survival analysis study are censoring and
truncation of data.

Figure 2.1: Illustration of censoring.

• Right Censoring: Right censoring refers to the case when the event of interest
either occurs after the end of the observation period or is unobserved due to the
loss of the subject due to other independent reasons. In Figure 2.1, subjects 3
and 4 are subject to right censoring. Even if the exact duration is not observed,
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right censoring still reveals partial information: we have an inferior bound on the
survival duration.

• Left Censoring : Left censoring occurs when the trigger point of the duration
measure is before the observation period as it is the case for the subject 6 in
Figure 2.1. Once again, we only know that the real duration is superior to the
one observed.

• Right Truncation Right truncation corresponds to individuals who are com-
pletely excluded from a study because the starting event that includes them in
the study happens after the end of the observation period.

• Left Truncation Left truncation is the opposite. An individual is excluded be-
cause the event of interest occurs before the beginning of the observation period.

Most of the time, for studying biometric risks in life insurance, left censoring and right
truncation do not occur.

Left truncation is more likely to happen when modeling life risks, but in the following,
we will only deal with the right censoring, which is the most common scenario. It is
worth noting that it is possible and quite easy to consider left truncation by enhancing
a bit of the modeling.

Impact on duration estimation

When dealing with survival data, a common mistake could be to simply ignore any
censor or truncation effects. This approach leads to an underestimation of the interest
event probability. Another common mistake is to restrict the study to only observations
that are complete by removing any censored or truncated records. Here as well, esti-
mation is extremely biased. Let consider the ten following individuals to understand
the intuition behind the importance of considering censoring:
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1 2 3 4 5 6 7 8 9 10
Duration observed 10 9 1 3 0 2 8 1 14 11

Real duration 13 15 1 3 0 2 10 1 14 11
Status C C D D C D C D D D

Figure 2.2: Illustration to highlight the impact of censor

Based on this data, the mean survival duration period is 5.9 when considering censored
time as death time and 5.3 when removing censored observation while the real one is
7. In both cases, in this example, life expectancy is underestimated when the partial
information coming from the censored individuals is ignored. In other words, the factor
of risk will be overestimated.

2.1.3 Quantity of interest

The theory focuses on two functions as the quantity of interest to estimate: the survival
function S and the hazard function h. Having an estimation of one of them allows
to fully model the survival of an individual.

The Survival Function

The survival function S represents the probability that the time to the event is not
earlier than a specific time t:

S(t) = Pr(T > t) (2.1)

Let us recall that the cumulative distribution function for the random variable T

uniquely determines L (T ) the law of T :

F (t) = P(T ≤ t)
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From here, we define the survival function :

S(t) = P(T > t) = 1 − F (t−)

The survival function is decreasing from 1 to 0. The meaning of a probability equals to
1 at the starting time is that 100% of the observed subjects are alive when the study
starts: none of the events of interest have occurred. From this quantity, we can define
the cumulative death distribution function F (t) = 1 − S(t) and the density function
f (t) = dF (t)

dt
=

−dS(t)
dt

for continuous cases and for discrete cases f (t) = [F (t+∆t)−F (t)]
∆t

. The
relationship among these functions is shown in Figure 2.3.

However, in circumstances like life insurance where the subscriber already has a certain
age τ at time of entry in the portfolio, one is more interested in L (T ∣T > τ ) the
conditional law of T :

S(t∣x) = P(T > t∣T > τ ) = {
1 if t ≤ τ
S(t)
S(τ ) if t > τ

Figure 2.3: Relationship among f (t), F (t) and S(t)

The Hazard Rate

In the case of lifetimes, consider an individual is of age t. One wishes to define a
quantity that tells us whether this individual is strongly at risk right now, or if the
probability that he dies in the near future is low. The hazard rate intends to express
the risk that an event (death) occurs in the immediate future, knowing that it did not
occur before.

It indicates the rate of event at time t, given that no event occurred before. Formally,
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the hazard rate function is defined as:

h(t) = lim
∆t→0

Pr(t 6 T 6 t +∆t∣T > t)
∆t

= lim
∆t→0

F (t +∆t) − F (t)
∆tS(t)

= −
d logS(t)

d t

(2.2)

From this equation we can easily derive that

S(t) = exp(−∫
t

0
h(s)ds) = exp(−H(t))

where H(t) = − ∫ t0 h(s)ds is called the cumulative hazard function.
Using the same notation as before, we can define a likelihood function taking into
account censoring:

L = ∏
i

P (T = ti)δiP (T > ti)1−δi = ∏
i

h(ti)δiS(ti) (2.3)

The intuition of the function comes from the contribution to the likelihood function
between a censored and a full-observed individual:

• If an individual dies at time ti, its contribution to the likelihood function is indeed
the density that can be written as S(ti)h(ti).

• If the individual is still alive at ti, all we know is that the lifetime exceeds ti,
which means that the contribution to the likelihood function is S(ti).

2.2 Exposure derivation

Time discretization, typically on an annual basis, is a very common way to assess
mortality (example : life tables, life expectancies by age...). However, it introduces
several challenges with respect to the accuracy of the reported death rate on each of
the considered time intervals. Indeed, withdrawing censored subjects from the study
introduces bias if we compute traditional estimators : the mortality rate qj, within a
time interval Ij = [τj, τj + 1], can no longer be estimated with the ratio of the deaths,
dj, on the number of alive subjects at the beginning of the interval, lj :

qj =
dj

lj
=
lj − lj+1

lj
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The quantity dj

lj
is indeed an inaccurate estimation as deaths that occur after censor-

ship, but still within Ij (before τj+1), will not be known. For example, if an insured
terminates his life insurance policy in February, and dies 4 months later that same year
in June, his death would remain unknown to the life insurer who would therefore not
take him into account among the dj deaths in his portfolio for that year, whereas it is
still a death at year Ij.

To compensate for the withdrawal, the number of alive subjects, lj, is replaced by the
number of subjects exposed to risk, meaning that subjects censored in the course of
that year are weighted based on their length of presence in the portfolio. Depending on
the hypothesis made on mortality, several types of exposure can be considered.

Three types of exposures are considered by actuaries: Distributed exposure, Initial expo-
sure and Central exposure. However, we will only focus on the last two as the distributed
exposure method relying on uniform distribution of deaths is not widely-used.

2.2.1 Initial Exposure and Balducci hypothesis

We denote initial exposure the quantity, EIj, which represents the global amount of
time each life was exposed to the risk of death during the interval j. As the exposure is
based on the lives at the start of the interval the exposure can be referred to as initial.
EIj is the aggregation of the following individual exposure, eij:

• Alive at the start and the end of the interval are assigned 1

• Deaths during the time interval are assigned 1

• Censored are assigned the fraction of the interval they were observed

Formally, if we denote respectively ci,j and ti,j the censoring and death time of the
individual i in interval j, wj the number of withdrawals and lj the number of alive
subjects, the initial exposure is expressed as:

EIj =

lj

∑
i

1{ti,j>1} × 1{ci,j>1} + 1{ti,j<1} + ci,j1{ci,j<1}

=

lj

∑
i

1 − 1{ci,j<1} + ci,j1{ci,j<1}

= lj − wj +

wj

∑
i=1

ci,j

To understand the idea behind this quantity, we define the two following notations for
the rate of mortality,
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• qj = P (T ≤ τj + 1∣T > τj) in interval j

• ci,jqj = P (T ≤ τj + ci,j∣T > τj) for the one in the interval [τj, ci,j]

The number of deaths can be expressed as the sum of the deaths observed within the
interval and the deaths expected for the censored subjects. Formally:

dj = (lj − wj)qj +
wj

∑
i=1

ci,jqj = ljqj −

wj

∑
i=1

1−ci,jqj+ci,j (2.4)

The Balducci hypothesis supposes that mortality rates decrease over the interval
and are defined as:

1−ci,jqj+ci,j = P (Ti ≤ τj + 1∣Ti > τj + ci,j)
= (1 − ci,j)P (Ti ≤ τj + 1∣Ti > τj) = (1 − ci,j)qj

Injecting it in the previous equation gives:

dj = ljqj − qj

M

∑
i

(1 − ci,j)

Solving the formula for qj:

q̂j =
dj

lj −∑wj
i=1(1 − ci,j)

=
dj

lj − wj +∑wj
i=1 ci,j

=
dj

EIj

We finally get the rate of mortality estimator corrected for censoring with the previous
definition of initial exposure as expected. This approach relies on Balducci assump-
tion, which generally does not fit well for mortality as mortality rates increase with
time. However withdrawals are usually small compared to the population, which allows
to ignore these errors.

2.2.2 Central Exposure and Constant hazard function

Depending on the mortality observed within a dataset, one may prefer to use another
assumption: the constant hazard function over each time interval. In this case, another
exposure should be used.

The central exposure, ECj is the amount of time individuals are observed within
the interval. The difference with the initial exposure is that only individuals who
survived the whole time interval are assigned 1.
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The constant hazard function assumption implies that the hazard is constant over
each time interval. For e ∈ [0, 1], we denote hj the hazard rate over the interval
[τj, τj + 1]:

h(τj + e) = hj (2.5)

As long as we consider time interval small enough this hypothesis is acceptable.
When hj is known for each j, the survival function is easy to compute :

S(τj + e) = exp(−∫
τj+e

0
h(s)ds) = exp(−

j−1

∑
s=1

hs + ehj) (2.6)

The goal is then to estimate each hj.

Let eci,j be the individual central exposure, it corresponds to the amount of time
one is observed within an interval. In addition, δi,j is a death indicator in [τj, τj+1] (1
if death is observed, 0 otherwise). The likelihood can then be written as:

L = ∏
i

S(τj + eci,j)h(τj + eci,j)δi,j (2.7)

Using the constant hazard function assumption and considering the logarithm of the
likelihood we get:

log(L) = ∑
i

[eci,jhj + δi,j log(hj) −
j−1

∑
s=1

hs] (2.8)

The maximum likelihood estimator ĥj, so that d

dhj
log(L) = 0, is then the ratio of the

number of death observed within the interval divided by the exposure :

ĥj =
∑i δi,j

∑i eci,j
=

dj

ECj
(2.9)

By definition, we can write q̂j = 1 − exp(−ĥj). As initial exposure, the central exposure
is interesting as it can be expressed through a closed formula. However, it relies as well
on a death distribution, which is generally not verified in practice. Indeed, constant
hazard rates could be considered as an accurate approximation for younger people,
where a large proportion of deaths is accidental or due to critical illnesses (cancer,
cardiovascular...), but it becomes far less accurate reaching very old ages : for exam-
ple, the winter flu epidemic is responsible for a large number of elderly people deaths
each year, which would encourage U-shaped hazard rates on calendar year intervals.
Reaching even greater ages (99+) where the life expectancy becomes very short, ev-
ery month sees a notable increase of the hazard rate, favoring increasing hazard rate
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functions over intervals.

2.2.3 Modeling our data using exposure

The main advantage of discretization is that it allows considering classical modeling
approaches, by predicting the number of deaths for each time interval. In practice, we
will model the random variable dj describing the number of deaths using the exposure
as weights or offset. Our database has been built on discrete annual time steps : each
insured’s biomedical features are measured on January 1

st every year, and each begun
year of the contract is considered as due to the insurer, in other words, the contract is
not terminated until December 31, the whole year’s premium is due and the insured
remains covered against death until the end of that year. Furthermore, death or cen-
sorship are only observed on December 31

st. It is basically an initial exposure setup
where the censorship-induced exposure is always 1. This simplifying hypothesis allows
us to have an annual exposure that is always 1.

2.3 Mortality modeling

2.3.1 Non-parametric estimators

Mortality tables

In actuarial science, mortality tables show, for each age and gender, the probability
that a person will die before their next birthday ("probability of death"). They are
widely used in life insurance to forecast annual death rates, probability of surviving
any particular year of age, remaining life expectancy, or longevity risk. Typically, they
report, for each age and gender, the number of observed deaths per 100,000 individuals
in that group on the reference year.

There are two types of life tables used in actuarial science. The period life table rep-
resents mortality rates during a specific time period of a certain population. A cohort
life table, often referred to as a generation life table, is used to represent the overall
mortality rates of a certain population’s entire lifetime : they must have had to be
born during the same specific time interval. A cohort life table is more frequently used
because it is able to make a prediction of any expected changes in mortality rates of a
population in the future, and analyzes patterns in mortality rates that can be observed
over time. Both of these types of life tables are created based on an actual population
from the present, as well as an educated prediction of the experience of a population in
the near future. Other life tables in historical demography may be based on historical
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records, although these often understate infant mortality in regions where statistical
records of births are imperfect.

All mortality tables are specific to environmental and life circumstances, and are used to
probabilistically determine expected maximum age within those environmental condi-
tions. For example, discovery of a breakthrough cancer treatment or a global pandemic
are events that modify the medical context under which a life table was built.

For example, my data generation process relies on France’s 2016 mortality table : it
reports, for each age and gender, the number of observed deaths per 100,000 in 2016
(see annex 5.5).

Kaplan-Meier Estimator

When we have no censored observations in the data, the empirical survival function is
estimated by:

Ŝ(t) = 1
n

n

∑
i=1

1ti>t

This estimation is no longer viable in presence of censor as we do not observe the death
time ti but the end of observation time yi. The non-parametric estimation is extended
to censored data.

Kaplan-Meier estimator is the most widely used because of its simplicity to compute.
It is implemented in many of survival libraries and packages of statistical and mathe-
matical software. Besides, this estimator relies on no assumption and can thus easily
be used as a reference model or to test hypothesis.

The main idea behind this estimator is that surviving after a given time t means being
alive just before t and do not die at the given time t. Consequently, with t0 < t1 < t we
get :

S(t) = P(T > t)
= P(T > t1 , T > t)
= P(T > t ∣ T > t1) × P(T > t1)
= P(T > t ∣ T > t1) × P(T > t1 ∣ T > t0) × P(T > t0)

In the end, by considering all the distinct times ti, (i = 1, ..., n) where an event occurred
ranked by increasing order (whatever it is a death or censorship) we get:

S(tj) = P(T > tj) =
j

∏
i=1

P(T > ti ∣ T > ti+1) , with t0 = 0.
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Considering the following:

dj the number of deaths that occurred in tj

Nj the number of individuals alive just before tj

The probability qj = P(T ≤ tj ∣ T > tj−1) of dying in the time interval ]tj−1, tj] knowing
the individual was alive in tj−1 can be assessed by : q̂j =

dj

Nj

Let δi be the censorship indicator of each observation; the Kaplan-Meier estimator is
then defined as:

Ŝ(t) = ∏
ti≤t

(1 − di
Ni

)δi (2.10)

We finally obtain a step function for the survival function where the jumps are observed
at the empirical observed death times.

Figure 2.4: Impact of ignoring censoring in life duration study

As introduced before, ignoring censoring leads to an underestimation of the life du-
ration. The Figure 2.4 highlights this underestimation. Three ’Kaplan-Meier’ survival
curves are plotted on different datasets: the real one, the one relying only on the fully
observed individuals, and the one, for which censor and dead individuals are not dis-
tinguished. As the two last curves are below the real one, it means that at each time
the survival probability is lower and thus that the risks have been overestimated.

Kaplan-Meier estimation is effective to get the survival curve of the global population.
However, the precision of the estimation relies on the number of observations. If we
want to take into account individuals’ characteristics, we need to recompute the esti-
mator for each chosen subset, which reduces the number of observations and thus the
accuracy.

On the business side, it is indeed important to have a good prediction among different
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subgroups rather than on the global level. The insurer portfolio may indeed have an
over-representation of some individuals compared to the population used to build the
model, knowing that the insured population has lower mortality compared to the global
population.

Nelson-Aalen Estimator

Instead of estimating the survival function, another method has been developed to
estimate the cumulative hazard function. It is defined as:

Ĥ(t) = ∑
ti≤t

di
Ni
δi

To get an estimator of the survival function, one only has to plug-in the cumulative
hazard estimator into the formula S(t) = e−H(t)

Ŝ(t) = e−Ĥ(t)
= ∏

ti≤t

(e−
di
Ni )δi ≈ ∏

ti≤t

(1 − di
Ni

)δi

If the number of deaths is small compared to the number of people at risks at each
time, the Nelson-Aalen plug-in survival function can be approximated by the Kaplan-
Meier estimator. The two estimators are thus numerically close, but they have different
properties, which implies different confidence intervals or median times.

2.3.2 Parametric extimators

Logistic Regression

In statistics, the logistic model (or logit model) is used to model the probability of a
certain class or event yi ∈ {0, 1}, such as pass/fail, win/lose, alive/dead or healthy/sick.
In its basic form it uses a logistic function to model a binary dependent variable (in
our case, survival at the time step).

The logistic function is of the form

p(x) = (1 + e−λ(x−µ))−1

where x is the vector of covariates, p(x) the estimated probability of survival, and λ

and µ the parameters to optimize.

The likelihood function is
L = ∏

yi=1

pi∏
yi=0

(1 − pi)
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From that we can deduce the log-likelihood function, widely known as the binary cross-
entropy loss, based on which we estimate the parameters :

l = ∑
i

yiln(pi) + (1 − yi)ln(1 − pi)

Poisson regression

Poisson regression model assumes that the total number of deaths within the time
interval j follows a Poisson distribution and is mainly based on the central exposure.
That is to say:

dj∣X ∼ P(ECjhj(X)) (2.11)

The idea behind the parameter used in the Poisson distribution comes from the constant
hazard function hypothesis, as under this hypothesis ĥj =

dj

ECj
, so that the expected

values match.

In literature, dj corresponds to an aggregate number of deaths for all similar individuals
(i.e. with the same vector X of characteristics for a specific interval). However due to
the additive property of the Poisson distribution, it is equivalent to consider afterward
the aggregation of the prediction of the death indicator of everyone, which means
considering a model as follows:

δi,j∣X ∼ P(eci,jhi,j) (2.12)

Using a log-link function, the model becomes equivalent to a classical Poisson regression
model with the exposure in offset:

log(E[dj∣X]) = log(ECj) +X ′
β = log(ECj) + log(hj) (2.13)

which means

log(hj) = log(
E[dj∣X]
ECj

) = X ′
β (2.14)

We then apply the classical generalized linear model with a Poisson distribution to a
pseudo data table with exposure. Through the likelihood optimization with respect to
β, we get the risk parameters:

L(β∣X,D,E) = ∏
j

(ECjeX
′
jβ)dje−ECje

X
′
jβ

dj!
(2.15)

It is also possible to consider an extension and add a regularization factor to only
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consider the variables with a high explanatory power. When the probabilities are small
if the central exposure is not available in the data, approximating the model with initial
exposure predicts similar results.

Using the maximum likelihood, the the hazard function estimator ĥj = exp(X ′
β̂j) gives

us the mortality rate :

qj = 1 − exp(−ĥj) = 1 − exp(− exp(X ′
β̂j))

Cox Proportional Hazard Model

Cox’s model allows to take into account the effect of covariates and to measure their
impact on survival probabilities through the estimation of the hazard function. It be-
comes then possible to rank people’s risk according to their physiological, familial,
sociological or medical characteristics. This model may be considered as a regression
model for survival data.

The standard proportional hazards Cox model relies on the fundamental hypothesis
that the hazard rate function can be split into the product of two independent functions,
one called the non-parametric baseline hazard function relying only on time, and the
other called the relative risk function relying only on the different covariates.

µ(t∣Z) = µ0(t) × exp(gβ(Z)) (2.16)

Z the vector of covariates, which must be time-independent ;

g a function, linear or not, parameterized by β, that characterizes the impact of
each individual’s covariates on the hazard rate function independently of time ;

µ0 the baseline hazard function : it corresponds to the function giving, at each
timestep t, the hazard function for individuals with Z = 0 ; it is the time compo-
nent in the hazard rate.

In the linear case, we have gβ(Z) = β
′
Z ; we have not included a constant, since the

exponential makes it equivalent to simply multiplying the baseline hazard function by
a factor equal to the exponential of that constant. Specifically, the Cox proportional
hazards model assumes a multiplicative effect of the covariates:

µ(t∣Z) = h0(t)exp(< β, Z)

The phrase proportional hazards comes from the scalar product < β, x > in the expo-
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nential that can be decomposed (supposing a covariates vector x of size n):

exp(< β, x >) = exp(
n

∑
1

βixi) =
n

∏
1

exp(βixi)

The effects of each individual feature of the covariates vector are multiplicative, "pro-
portional". Given two individuals A and B, the ratio of their hazard functions is as-
sumed to be unchanged over time, constant at each time step and depending only on
the parameters β and their covariates ZA, ZB.

In the case of Cox neural networks, the function g is modeled by a neural network.

The main interest of the model is the possibility to rank people on their risk level with-
out computing the survival function. The relative risk is introduced to this end:

RR =
µ(t∣ZA)
µ(t∣ZB) = exp(g(ZA) − g(ZB)) (2.17)

The estimation can be divided into two steps. Depending on the purpose of the study
one may stop at the first one.

1. We compute the estimator β̂ by maximizing the partial likelihood function defined
by Cox :

L(β) =
m

∏
i=1

e
Z
′
j(i)β

∑j∈Ri
eZ

′
j
β

(2.18)

m the total of uncensored individuals

j(i) the individuals who died at time t(i)

t(i), ..., t(m)the ordered time of observed death events

Ri the risk set, which is a set of indices of the subjects that still alive just before
t(i) ∶ Ri = {j ∶ tj ≤ t(i)}

When one is only interested in comparing the survival curve to classify individuals
according to their survival probabilities, only the estimation of the risk parameter β
is needed. The baseline hazard µ0(t) does not only have any effect on the relative
risk.

2. If we want the survival function for all individuals, the baseline hazard µ0(t) is
required in addition of the β parameters. The survival function can be computed as
follows:

Ŝ(t) = exp(−H0(t)exp(Zβ̂)) = S0(t)exp(tβ̂) (2.19)

where H0(t) is the cumulative baseline hazard function, and S0(t) = exp(−H0(t)) repre-
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sents the baseline survival function. The Breslow’s estimator is the most widely used
method to estimate Ŝ0(t) = exp(−Ĥ0(t)) where

Ĥ0(t) = ∑
ti<t

ĥ0(ti) with ĥ0(ti) =
1

∑j∈Ri
eZjβ

if ti is a time event, 0 otherwise

Estimating S0(t) thanks to Kaplan-Meier implies similar results.

In practice, the separation of the baseline hazard function modeling the time component
of the hazard rate from the relative risk function modeling the covariates effect is
subject to discussion. Indeed, the impact of some medical indicators is not the same
through time : for example, a "healthy BMI" does not cover the same range of values
for children (weight-height relation varies rapidly due to growth spurts), middle-aged
or elderly (who experience a muscle loss) individuals.

Markov chains and semi-Markov models

Within the statistical toolbox for survival analysis, Kaplan-Meier (see 2.3.1) estimation
and Cox proportional hazards regression (see 2.3.2) are commonly employed methods
but not appropriate for all studies, particularly in the presence of competing risks and
when multiple or recurrent outcomes are of interest. In that regard, Markov chain mod-
els can accommodate censored data, competing risks (informative censoring), multiple
or recurrent outcomes, frailty1, and non-constant survival probabilities.

A Markov model is a stochastic model describing a sequence of possible events (or a
sequence of moves across possible states) in which the probability of the next event de-
pends only on the current state. There is a finite number of defined states, one (and only
one) of which must contain the individual at any particular time. These possible states
may be, for example, {alive, dead}, {sick, healthy, dead}, {autonomous, dependent,
dead}, etc. Markov chain models are useful for sequential data, but require caution
since they are no-memory : for example, in cancer survival studies, it is often crucial
to know whether a healthy policy-holder has always been healthy or is in remission
of a past cancer (his chances of relapse are therefore much higher than the chances of
another comparable healthy person of developing cancer).

Markov chain models allow to calculate the probability and rate (or intensity) of move-
ment associated with each transition between states within a single observation cycle
as well as the approximate number of cycles spent in a particular state. When obser-
vations are made at regular intervals, the number of cycles can be interpreted as time
in a state. Time spent in all states prior to absorption can be summed to estimate the

1Frailty is an unobserved random proportionality factor that modifies the hazard function.
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Figure 2.5: An example Markov model for survival analysis
total survival time. They also enable the estimation of survival times in multiple states:
this is particularly attractive for studies of chronic diseases with well-defined phases,
like cancer and autoimmune diseases, where remission and recurrence are of interest in
addition to overall survival.

One only measures the state reached at every period beginning : "internal" transitions
taking place within the time-lapse of a period are not taken into account. This is
generally not a very restrictive hypothesis, since in survival analysis the studied events
are not supposed to be very frequent (for example, it is rather unlikely that several
transitions from active cancer to remission would happen within a time interval of one
year).

Markov chains are particularly adapted to censored data : every individual’s transi-
tion chain contributes information to the model, whether partial (the individual never
reaches an absorbing state due to censorship) or complete (several transitions occur
until an absorbing state is reached). Markov models also enable left truncation because
individuals are not required to enter the transition matrix in any particular state. Pos-
sible movements across states, either uni- (e.g. autonomous → dependent) or bi- (e.g.
sick↔ healthy) directional, are depicted with a transition matrix or state diagram (see
figure 2.5). In order for the process to terminate, at least one of the states must be
absorbing, i.e., individuals have zero probability of leaving: death, for example.

Use of Markov chains requires two fundamental assumptions :

• Transition probabilities are constant over time (time homogeneity) ;

• The probability of the next transition depends only on the current state (first-
order Markov property).

These two hypotheses are very strong to make in the general case :
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• In survival analysis, transition probabilities may very often be dependent on a
time factor, thus contradicting the time homogeneity hypothesis (for example, the
probability of the transition autonomous→ dependent is probably much higher at
higher ages than in the youth). The time homogeneity assumption is often difficult
to meet, particularly in studies of chronic disease where studies are years long,
single observation cycles can span a year or more and increasing age generally
corresponds to greater risk of disease or death. However, this concern can be
mitigated by data stratification (e.g., by age group) or regression modeling, where
the effect of covariates is included in the estimation of transition probabilities.

• The transition probability from one state to another is very rarely blind to the
process anteriority, thus contradicting the first-order Markov property (for exam-
ple, in the case of cancer relapse, the probability of transitioning healthy → sick is
often much higher if there has already been healthy → sick → healthy transitions
in the past than if the individual has always been stuck at healthy before.

In closing, given that improper use of Markov models may result in biased estimation,
we will not focus on them in the context of this thesis since the two fundamental
underlying hypotheses are clearly not verified.

2.4 Machine learning models in survival analysis

The introduction of machine learning in survival analysis has posed numerous chal-
lenges. It brings powerful predictive power, but also a "black box" problem in so far as
some models can be hard to interpret and it can sometimes be complicated to justify
the adequacy of the results. This can be a challenge, for example, to justify of sound
pricing with respect to the risk in front of the regulator, or to guarantee the absence
of discriminatory rules taking place inside the black box process. However, some inter-
pretable models like Generalized Linear or Additive Models (GLMs, GAMs) work well
on medium-sized amount of data.

Another challenge can be posed by the assumption of independence between the covari-
ates that is underlying to most machine learning models. This is generally not true and
can lead to big performance and reliability issues, as will be illustrated in the results
section. For example, it couldn’t be more wrong to assume independence of systolic
and diastolic blood pressures, or even of blood pressure levels and BMI ; you can refer
to the correlations analysis in the data generation par (figure 3.12).
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2.4.1 Cox-Model adaptations

Several Machine Learning methods have been adapted to Cox’s Proportional-Hazard
models such as Trees, Neural-Networks, Generalized Additive Models, etc. In this sec-
tion, we present Elastic Net and Gradient Boosting Machine adaptation, as they are
the most widely used in practice.

Cox-ElasticNet

In Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent
(2018), Tibshirani et al proposed to apply the Elastic Net regularization to Cox propor-
tional hazard model. In statistics and, in particular, in the fitting of linear or logistic
regression models, the elastic net is a regularized regression method that linearly com-
bines the L1 (norm-1 of the parameters) and L2 (euclidean norm of the parameters)
penalties of the lasso and ridge methods. The Cox-Elasticnet extends this approach to
the Cox regression. The goal is to put aside the less relevant features by penalizing the
models with a high number of parameters. Decreasing the number of features allows
to diminish the signal noise and consequently increase model accuracy.

This approach is very useful in high dimensions, i.e. when the number of features is
close to the number of observations. This might occur during some epidemiological
studies where a significant amount of information is available for each patient, but a
limited number of patients are observed.

In practice, this approach is often used to quickly identify variables that have the
biggest explanatory power and to put aside the non-relevant ones. In this approach the
model parameters β are estimated by optimizing the following:

β̂ = argmax
β

[log(L(β)) − λ (α ∥β∥1 + (1 − α)1
2
∥β∥2

2)] (2.20)

with L the likelihood of the Cox model (cf equation 2.18), λ and α hyper-parameters.

The penalization intensity is controlled thanks to the hyper-parameter λ. If λ equals 0
then we are performing a classical Cox regression. The higher the value of λ the higher
the penalization, the lower the number of non-null parameters.

When the hyper-parameter α equals 0 it is called LASSO2 regression, when α equals
1 it is named a Ridge regression. Hyper-parameter α is in [0, 1], it balances between
LASSO and Ridge regression.

This approach has the same issues as the classical in Cox model as it relies heavily
2LASSO stands for Least Absolute Shrinkage and Selection Operator.
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on the proportional force of mortality assumption that might not be verified. Besides,
non-linear effects and unspecified interactions will not be captured by this model.

Cox - Gradient Boosting Machine

A gradient boosting adaptation can help integrating non-linear effects within the Cox
framework.

Gradient boosting consists in aggregating several simple models (weak learners). The
weak learners remain the same base learners throughout the process, but are iteratively
trained on the residual errors made by their predecessor. Thus, each model relies on
those constructed in previous step.

Gradient Boosting Machine is a mix between gradient boosting and gradient descent,
which is an optimisation process to minimize a loss function. The adaptation of the
GBM to a Cox’s proportional hazard model is possible by choosing the opposite of Cox
partial likelihood as loss function :

LL(β) = −
m

∑
i=1

[X ′
j(i)β − log(∑

j∈Ri

e
X

′
j(i)β)] (2.21)

Generally speaking, the algorithm is presented as the process below:

Initialisation : F0(x) = argminβLL(β)

For m = 1 to M (number of weak learners):

• Computation of the pseudo-residuals: rm = −dL(Fm−1(X))
Fm−1(X)

• Fitting a new weak learner on pseudo-residuals: fm(X) = rm

• Finding the best γm by solving γm = argminγL(Fm−1(X) + γ × fm(X))

• Update the new model: Fm = Fm−1 + v × γmfm

Thus, at each iteration, until the stopping condition is satisfied, we try to reduce the
global error by fitting each specificity of the residuals. A learning rate, γm is introduced
to control how much we adjust the weights of our base learner. This parameter may
be constant and chosen at the beginning of the process or optimized at each step. A
large value may reduce computing time but may cause divergence, a small one ensures
convergence and getting an optimum but make learning time more consuming. The
shrinkage parameter v, a scalar between 0 and 1, allows to regularize the model and
ensure the convergence of the model.
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The real advantage of gradient boosting is that it can be adapted to any weak learners.
Most of the time trees are chosen. Cox Gradient Boosting Machine is a way of building
classical regression trees by taking into account censoring within the loss function
and assuming the proportional hazard hypothesis. In this case, trees are constructed
consecutively, and the gradient shows the best path so that each tree is constructed on
the previous one in such a way as it leads to the biggest error reduction.

Figure 2.6: Gradient Tree Boosting

2.4.2 Survival Trees

Another method to build specific trees for survival analysis have been developed. Com-
pared to Cox-Gradient Boosting, it enables to create predictor trees, which may be
directly interpreted. The real advantage of trees is its simplicity compared to other
Machine Learning techniques, which contributes to short computation time.

Survival trees are the direct adaption of decision trees to survival analysis. Traditional
decision trees are also called CART (i.e. classification and regression tree), which is
the fundamental algorithm of the tree-based methods family. The CART algorithm
developed by Breiman makes the use of trees very popular to solve regression and
multi-class classification problems.

Like CART, survival trees are binary trees grown by a recursive splitting of tree nodes.
Starting from the root node composed of all the data, the observations are partitioned
into two daughter nodes according to a predetermined criterion. Using a recursive
process each node is split again into two nodes until reaching the stopping criterion.
The best split for a node is found by searching over all possible variables and values,
the one that maximizes survival difference.

The difference between CART and Survival trees relies on the splitting criterion
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used to build the tree. When dealing with survival data, the criterion must explicitly
involve survival time and censoring information. Either it aims at maximizing the
between-node heterogeneity or at minimizing the within-node homogeneity.

Log-rank criterion

The most widely used criterion is the maximization of the log-rank statistic (cf An-
nex 5.5) between the two sub-samples of the nodes, which contributes to creating splits
that distinguish the most the mortality. As it is impossible to measure the similarity
of the mortality within a group, the idea behind is that by sequentially creating splits
with distinct mortality, we assume to obtain homogeneous groups at the end as the
dissimilar cases become separated at each node.

Hyper-parameters should be introduced to optimize the number of splits: a minimum
occurrence of events within a leaf or a lower threshold of the log-rank statistic to make
a split. The intuition behind this stopping criterion is to ensure the quality of the split.
The first one forces the splitting criterion to be computed on enough data to make sure
that the log-rank statistic is consistent. The lower bound for the second one comes from
the reject region bound of the underlying log-rank test, which means a node should not
be split if the mortality is not statistically different with respect to any variable.

The main advantage of this method is that it does not rely on major assumptions to
build the tree, even if the statistic considered to measure the difference in moralities
between groups is questionable. Indeed, the log-rank test performance may be poor in
some situations.

Once the tree is built, the model assumes that individuals within a leaf have the same
common survival curve and thus a global survival curve is computed based on the
individual within each final leaves. In open-source packages, the Nelson-Aalen estimator
is used to compute the cumulative hazard function, from which we can deduce the
survival curve or the expected lifetime duration. Experimental studies have shown that
using the Kaplan-Meier estimator to directly estimate the survival curve gives similar
results.

Thanks to the binary nature of survival trees, individuals with characteristics xi fall
into a unique leaf f composed of observations (xi, δi) with i ∈ If . The prediction of
his cumulative hazard function is the estimator for xi’s terminal node:

Ĥ(t∣xi) = Ĥf (t) = ∑
ti<t
i∈If

di
Ni
δi (2.22)
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Some other criteria have also been studied such as C-index maximization or deviance
minimization within one node.

Deviance criterion

The deviance minimization is based on a likelihood estimation relying on the propor-
tional hazard function to partitions the observation. Under this hypothesis, the hazard
function within a leaf f composed of observations (xi, δi) with i ∈ If , is expressed as
follows:

hf (t) = h0(t) × θf

Using the formula 2.3, the likelihood can thus be rewritten :

L = ∏
f

∏
i∈If

hf (ti)δiSf (ti) = ∏
f

∏
i∈If

hf (ti)δie−Hf (ti) = ∏
f

∏
i∈If

(h0(t)θf )δie−H0(ti)θf (2.23)

Where H0(t) and h0(t) are respectively the baseline cumulative hazard function and the
baseline hazard function, and θf is the parameter to estimate by likelihood maximisa-
tion. When H0 is known, we can get the maximum likelihood estimator:

θ̂f =
∑i∈If

δi

∑i∈If
H0(ti)

In practice, the cumulative hazard function is unknown and we plug in the breslow
estimator

Ĥ0(t) = ∑
i∶ti≤t

δi

∑f ∑i∶ti≥t;i∈If
θf

The deviance is finally defined as:

R(f ) = 2[Lf (saturated) − Lf (θ̂f )] (2.24)

where Lf (saturated) is the log-likelihood for the saturated model that allows one pa-
rameter for each observation and Lf (θ̂f ) is the maximal log-likelihood.

The tree-building algorithm is based on CART: it splits the observation and covariate
space into regions that maximize the reduction of the deviance realized by the split
by testing all possible splits for each of the covariates. In this approach a stopping
criterion regarding the minimum size of a node is also considered since the likelihood
estimation converges when it relies on a large amount of data.

Simulations have shown that the performance is similar to the log-rank statistic. How-
ever, this method is not assumption-free and may not be applied to all datasets.
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Trees built with a C-index maximization also yield similar-quality results and are also
assumption-free, but require much more computation time. Thus, trees using the log-
rank criterion should be privileged.

Survival Random Forest

Random survival forest extends the random forest method to right-censored survival
data.

Random forest is an ensemble method inspired by the bagging of decision trees. Bagging,
which means Bootstrap Aggregating, is an ensemble learning method that enables to
create more robust predictor thanks to the aggregation of several ones trained on
different subsets.

Bagging consists in sampling with replacement B random subsets to train B trees f̂ b

on these subsamples. Finally the prediction of a new input X is defined as:

f̂Bagging(X) = 1

B

B

∑
i=1

f̂
b(X)

Random forests differ from a simple bagging of trees, as randomization is not only
applied to drawn samples but also to select features. At certain nodes, rather than
considering all the variables, a random subset of the attributes is selected to compute
the splitting criterion. The introduction of randomization enables to reduce the correla-
tion among the trees and to improve the predictive performance. The training process
is illustrated in Figure 2.7.

Figure 2.7: Random forest process illustration

Random survival forest is an ensemble tree method developed by Ishwaran et al that
follows the same process but considers survival tree instead of traditional decision trees.
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The algorithm is processed as below:

• Draw B bootstrap sample from the original data that excludes on average 37%
of the data, called out-of-bag data (OOB data)

• Grow a survival tree for each bootstrap sample, by selecting at each node p candi-
date variables. The split is chosen among the candidate variable that maximizes
the survival difference between leaves.

• Calculate the cumulative hazard function for each tree, Ĥb(t∣xi) and average it
over all the trees to obtain the ensemble cumulative hazard function:

Ĥ(t∣xi) =
1

B

B

∑
b=1

Ĥ
b(t∣xi)

The interpretation of the result may be questionable as we average several hazard
functions to get the predicted one. However as H(t) = ∫ t0 h(s)ds is already a sum of

functions, averaging it returns still a sum : Ĥ(t) = 1

B
∑B

b=1 ∫
t

0 ĥ
b(s∣xi)ds = ∫ t0[

∑Bb=1 ĥb(s∣xi)
B

]ds
and the prediction makes sense.

The main advantage is that forests can model non-linear effects without any prior
transformation of the data and contrary to boosting, in bagging each tree is built
independently and the process can thus be paralleled.

Figure 2.8: Bagging illustration
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Chapter 3

Data Generation

3.1 Assumptions and key criteria

The observation of cohort events is not frequent in insurance for now. In this memoir, I
simulate time series of biometric variables that are correlated with their mortality risk.
In addition, I simplified the study framework with the following assumptions :

• Date of birth is 01/01/xxxx ;

• Date of death is 31/12/xxxx ;

• Censorship occurs between 01/01 and 31/12, and is observed on 31/12 ;

• Annual observation of biometric features (GP report) is issued on 01/01/xxxx

A consequent part of this study has been focused on generating realistic, real-world-like
sequential data for a cohort of patients.

We focus on the impact of cardiovascular characteristics on the mortality of an insured.
Also, the life duration is discrete and not continuous : once a year, the insured’s medical
parameters are measured and his survival or censorship reported.

The choice of probability laws and the parametrization of the initial distribution of the
variables is based on the following references (see appendix 5.5) :

• 2016 mortality tables (by gender), France, INSEE ;

• 2016 gender ratios (by age), France, INSEE ;

• 2019 proportions of obese, hypertense, and smokers (by age category and gender),
Canada, Statistique Canada.

Furthermore, based on the medical literature and a discussion with the doctors and
underwriters at SCOR, certain variables are correlated :

• Corr(Obesity, Hypertension) : 0.40 ;
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• Corr(Hypertension, Smoking status) : 0.40 .

3.2 Data generator schema

3.2.1 From an initial distribution...

Beta law

The beta distribution is relevant for the following reasons. The beta probability dis-
tribution has a closed support [0, 1] that is convenient for enforcing certain medical
variables to take values in a range. Different values for the 2 shape parameters α and β
can result in various forms of the beta distribution that reflect the variance or skewness
of the observation.

We will designate by Γ the commonly used extension of the factorial function to strictly
positive real numbers :

z > 0, Γ(z) = ∫
+∞

0
x
z−1
e
−x
dx

The beta distribution B(α, β), parametrized by α > 0, β > 0, has the following density
function over [0, 1]:

x ∈ [0, 1], fα,β(x) =
Γ(α + β)
Γ(α)Γ(β)x

α−1(1 − x)β−1

It is notable here that for α = β, the law is symmetrical.

Its expectancy is E[X] =
α

α+β
and an estimator of its median is, for α > 1, β > 1,

q0.5 ≈
α−1/3

α+β−2/3
.

Simulation of age and gender

We have simulated a population resembling a life insurer’s portfolio. Therefore, the
first step has been to simulate ages for N = 200_000 insureds, following a beta law on
[25, 74] :

X ∼ B(α = 20, β = 20), Xage = 25 + 49 ×X

From a theoretical point of view, the expectancy E[Xage] = 25+49× 20

20+20
= 25+24.5 =

49.5 and the median q0.5 ≈ 25+49× 20−1/3

20+20−2/3
= 25+49× 1

2
= 49.5 (it is logical to predict

the same median and mean since the law is symmetrical).

After that, using the gender ratios by age :

(number of men of age x)/(number of women of age x)
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provided in the INSEE table, we define, for each age x, the probability to be a
man:

pman,x =
number of men of age x
number of people of age x

=
gender ratio at age x

(gender ratio at age x) + 1

For each generated individual of age x, we generate an is_M feature which is a gender
indicator (equals 1 if the individual is a man) from drawing a Bernoulli random variable
B(pman,x). Between ages 45 and 54, which include the majority (80.5%) of our portfolio,
the gender ratio is of 0.99 ; therefore, we expect a gender ratio in our simulated database
to be of the same order of magnitude. And indeed, with 49.4% of men at entry in the
portfolio, we end up with a gender ratio of 0.98.

Multivariate normal distribution

I have used a multivariate normal distribution in order to introduce correlations in the
initial distribution of some features. First, I generated N = 200_000 samples from the
following distribution:

⎛
⎜⎜⎜⎜
⎝

is_obese
is_hypertense
is_smoker

⎞
⎟⎟⎟⎟
⎠

∼ N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜
⎝

0

0

0

⎞
⎟⎟⎟⎟
⎠
,

⎛
⎜⎜⎜⎜
⎝

1 0.4 0

0.4 1 0.4

0 0.4 1

⎞
⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, on the 2019 Canadian data about obesity, hypertension and smoking habit pre-
ponderance (as a fraction of sub-population p) by age category and gender I applied
Φ
−1 the inverse of the cumulative distribution function for a gaussian random variable,

giving me the corresponding quantiles Φ
−1(p) = q for a normal law. Finally, for each

individual of given age and gender, I replaced the floating values xi for the is_obese,
is_hypertense and is_smoker by the indicator 1(xi < q) where q was the quantile
for the normal law corresponding to the proportion p of the feature observed in the
individual’s age and gender sub-group.

From categorical to continuous features

Now that I am provided, for each individual, with an age, gender and smoking
status, I would like to transpose the indicators or being obese and having hypertension
into numerical data, that I will then make evolve through time, deriving risk factors
from the levels and evolution. Once again, for the practical reasons explained before,
I chose to simulate the BMI and blood pressure distributions across my entire insured
population according to beta laws.

For the BMI, obesity is medically defined as a BMI superior to 30, and I decided,
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with advice from the biomedical risk team, to fix the initial attainable range of BMI
values to [15, 50]. The obesity threshold in the [0, 1] support of the beta law is located
at qobesity =

30−15

50−15
=

3

7
≈ 0.4286. I calculated the overall obesity prevalence in my

population (pobesity = 37.5%).

My objective now is to determine the parameters (α, β) of a beta distribution that will
ensure that 1−Fα,β(qobesity) = pobesity, where Fα,β is the cumulative distribution function
of the beta distribution. I fixed a parameter α = 2 (completely arbitrary), the objective
is now to solve for β :

∫
1

qobesity

x
α−1(1 − x)β−1

= pobesity
Γ(α)Γ(β)
Γ(α + β)

where α, qobesity, pobesity are set. Alternatively we can solve for (α, β) with given qobesity,
pobesity, but setting α = 2 enables me to minimize the squared difference as a function
of β.

A numerical minimization leads to the solution β ≈ 3.3438.

The final step is to draw N = 200_000 samplings from

XBMI = 15 + 35 ×X, X ∼ B(α = 2, β = 3.3438)

and randomly assign the values XBMI ≥ 30 to obese individuals, the values XBMI < 30

to non-obese individuals.

For the systolic and diastolic blood pressures, I proceeded in a similar manner. There
are two types of medically recognised hypertension, "standard" high blood pressure
defined by systolic blood pressure ≥ 140 and diastolic blood pressure ≥ 90, and isolated
systolic hypertension where the diastolic blood pressure remains in the normal range
of [70, 90]. Therefore, for the individuals classified as having hypertension, I randomly
assigned 10% of them as having isolated systolic hypertension.

I then proceeded in a similar manner as with the BMI :

Xsystolic = 200 − 100 ×X1, X1 ∼ B(α = 5, β = 1.6741)

Xdiastolic = 200 − 130 ×X2, X2 ∼ B(α = 20, β = 2.0969)

The final step of assigning the numerical systolic and diastolic blood pressure measure-
ment is different.

1. Sort the data in descending order based on systolic hypertension indicator, age
category (10-year intervals), BMI category (5-point intervals), smoking status,
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and finally BMI × age ;

2. Generate N = 200_000 samples of Xsystolic, sort them in descending order, assign
them to the aligned ordered individuals ;

3. Sort the data in descending order based on diastolic hypertension indicator, age
category (same as previous), BMI category (same as previous), smoking status,
and finally BMI × age ;

4. Generate N = 200_000 samples of Xdiastolic, sort them in descending order, assign
them to the aligned ordered individuals.

That procedure ensures that systolic and diastolic blood pressure are heavily correlated
(97.5%), ensures almost surely that we have systolic > diastolic, respects the heavy
impact of biometric factors such as age, BMI and smoking habit on blood pressure
(figure ??) without being "too" deterministic (ordering primarily by age and BMI
class rather than directly on the granular values, and refining only as the last sorting
key in order to avoid "jumps" in the average blood pressure values at the borders of
age and BMI categories).

3.2.2 ...To a dynamic evolution...

Dynamic Features

Once we have an initial distribution of age, gender, smoking status, BMI and systolic
and diastolic blood pressures for our N = 200_000 individuals at entry in the portfolio
(timestep 0), we want to generate dynamic evolution of these features. For simplifica-
tion, I consider the smoking status to be static (smokers don’t stop, non-smokers don’t
start). I also considered that I would assign trend signs for BMI and blood pressure
(ascending, descending, stable) and that this trend isn’t modified through time.

For the evolution of the body mass index and diastolic and systolic blood pressures,
based on the medical literature and discussion with the biomedical risk team, I have
chosen the trends as follows :

• Half of people have an increasing BMI, a quarter are stable and a quarter are
decreasing ;

• Systolic and diastolic blood pressures always evolve in the same direction (either
increasing, decreasing or stable) ;

• Half of people have an increasing blood pressure, 11.5% people have a decreasing
blood pressure and 38.5% are stable ;
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Figure 3.1: fBMI
border(XBMI )

Figure 3.2: f systolic
border

(Xsystolic)
• There is a 0.2 correlation between BMI trend sign and blood pressure trend sign.

Note : you have to be careful here that these are only choices about the trend signs,
increasing (+1), stable (0) or decreasing (-1), independently both from the amplitude
of said evolution and from the initial values of these parameters.

At each time step (year) :

X
BMI
t+1 = X

BMI
t + x

BMI
t , x

BMI
t ∼ N (sBMI

× µ
BMI

× f
BMI
border(XBMI

t ), σBMI )

where sBMI is the BMI trend sign (0, +1 or -1), µBMI
= 0.2 is an arbitrary yearly

average evolution of ±0.2 BMI points (equivalent to a win or loss of 0.6kg for a person
measuring 1.73m), σBMI

= 0.3 is an arbitrary standard deviation.

The final value XBMI
t+1 is finally clipped to the [14, 50] range of values, and fBMI

border is a
function only used to decrease the evolution speed once the BMI values get nearer the
edges of that interval, so that the BMI stabilizes more smoothly once it hits one of the
clipping values (see figure 3.1).

I proceeded similarly with the blood pressure :
µ
BP

= 1.5, σBP = 1, Xsystolic
t ∈ [95, 200], Xdiastolic

t ∈ [65, X
systolic
t − 10], f systolic

border
illus-

trated in figure 3.2 and fdiastolicborder illustrated in figure 3.3.
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Figure 3.3: fdiastolicborder (Xdiastolic)

Figure 3.4: Systolic Risk Factor
3.2.3 ...Ending in Death or Censorship

For each individual and each time step t, I compute a risk score Rt :

Rt = 1 + 1smoker + 2 × (RBMI
t +R

BP
t )

The blood pressure risk factor RBP
t is the sum of diastolic Rdiastolic(Xdiastolic

t ) (figure 3.5)
and systolic Rsystolic(Xsystolic

t ) (figure 3.4) risk factors, each comprised in [0, 1], therefore
R
BP
t ∈ [0, 2]. The BMI risk factor RBMI

t is the sum of 3 risk factors that depend on
the instantaneous level of BMI (figure 3.6), its variability over the last 3 years (figure
3.7) and its evolution since the previous year (figure 3.8). Therefore, RBMI

t ∈ [0, 3].
Finally, we end up with a risk factor Rt ∈ [1, 12], characterizing, at given gender
and age, the risk level of an individual with respect to his smoking, BMI and blood
pressure characteristics, compared to the baseline individual, non-smoker, with BMI,
systolic and diastolic blood pressure stable in the normal ranges. We multiply Rt by

Figure 3.5: Diastolic Risk Factor

60



Figure 3.6: BMI Risk Factor

Figure 3.7: BMI Variability Risk Factor

Figure 3.8: BMI Evolution Risk Factor
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Figure 3.9: Distribution of age at final time step
the annual hazard rate for the gender and age hrgender,age, and finally draw a Bernoulli
random variable :

1[Survives year t] ∼ B(min(0.99, Rt × hrgender,age))

That gives us an iterative generation of the lifespan T for all individuals.

Lastly, we generate a censorship variable C, independent from T and identically dis-
tributed across individuals : it is based on an annual lapse rate of 2% and a maximum
observation history of 26 years, in line with the general specifics of a life insurance
portfolio.

C = min(26, Ĉ), Ĉ ∼ N B(1, 0.02), Ĉ ⫫ T

In the general setup I make the hypothesis that terminating a contract is only possible
on the last day of each year, when we look up our individuals to check whether they are
still alive, therefore if death and censorship were to happen in the course of the same
year I would always consider my individual to be observed. Finally, we have :

Y = min(T,C), δ = 1[T ≤ C]

In my database I end up with 28.5% observed individuals. The end age distribution
is represented in figure 3.9.

3.3 Descriptive statistics of the dataset

3.3.1 Initial distribution

Empirically, we obtain the following initial age distribution (see figure 3.10) : the min-
imal observed age is 34, the maximum 65, the average is at 49.5 and the median at
50. This corresponds rather well to the age of life insurance subscription observed by
insurers on the commercial side.

We obtain the following initial BMI distribution across our initial population (figure
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Figure 3.10: Initial age distribution in the portfolio
3.11), where you can notice an important limitation : although the position of BMI
values under or above 30 is correlated to gender and age class based on the previous
construction of indicators, the BMI level inside each class isn’t. This is a deliberate
choice, in order to avoid being too deterministic and to keep enough variability in the
data.

Lastly, for the initial systolic and diastolic blood pressure value distribution, the order of
magnitude and importance of the correlations observed is in line with what is reported
in the medical literature and the expert opinion of the biometric risk modeling team
(see table).

age is_M smoker bmi syst. diast. risk hr Y target

age 1.00 -0.00 0.02 -0.00 0.57 0.56 0.19 0.50 -0.10 0.20

is_M -0.00 1.00 0.07 0.09 0.07 0.07 0.08 0.42 -0.09 0.18

smoker 0.02 0.07 1.00 0.01 0.24 0.23 0.68 0.42 -0.07 0.12

bmi -0.00 0.09 0.01 1.00 0.43 0.43 0.35 0.25 -0.04 0.08

syst. 0.57 0.07 0.24 0.43 1.00 0.98 0.67 0.67 -0.13 0.23

diast. 0.56 0.07 0.23 0.43 0.98 1.00 0.70 0.69 -0.13 0.22

risk 0.19 0.08 0.68 0.35 0.67 0.70 1.00 0.76 -0.12 0.19

hr 0.50 0.42 0.42 0.25 0.67 0.69 0.76 1.00 -0.16 0.27

Y -0.10 -0.09 -0.07 -0.04 -0.13 -0.13 -0.12 -0.16 1.00 -0.13

target 0.20 0.18 0.12 0.08 0.23 0.22 0.19 0.27 -0.13 1.00

In these correlations, target refers to the indicator of whether the individual will be
observed to die or will be censored. Of course, risky individuals are likelier to die
early and therefore to have target = 1 than healthy individuals. Y is his length of
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Figure 3.11: Initial BMI distribution in the portfolio
presence in the database, ending either with death or censorship: healthy individuals
or women have more chances to stay long. risk is the individual’s risk factor at entry
in the portfolio, calculated on smoking habit, BMI and blood pressures, and hr is
this risk score multiplied by the mortality tables hazard rates that depend solely on
age and gender. However, we observe important correlations between risk and age or
gender: this is due to the fact that, for example, more men smoke than women, or that
hypertension becomes largely prevalent with aging.

3.3.2 Entire dataset

Correlations

The overall correlations between features (all timesteps) are explicited on figure 3.12.

Figure 3.12: Correlations in the simulated database
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Trends

Analyzing how BMI trends impact mortality highlights that early mortality is driven
by extreme variations or dangerous weight values, see figure 3.13.

Figure 3.13: BMI trajectories before leaving the database, by gender

Mortality

I provide a brief exploratory survival analysis of my simulated database in order to
analyze the impact of risk factors on the survival curves. You can notice on figures
3.14, 3.15, 3.16 that both the theoretical and observed mortality rates are true to the
shape of the risk functions implemented for each parameter. It is very apparent on
figure 3.14 that the mortality risk is exponential on age ; this is solely due to the
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Figure 3.14: Mortality per age

Figure 3.15: Mortality per BMI
underlying INSEE mortality tables, as age is not explicitly taken into account in our
risk factor calculation. For BMI (figure 3.15), systolic and diastolic (figure 3.16) blood
pressures, the very fluctuating aspect of the mortality towards the high values is due
to a low number of observations in these limit zones.

The Kaplan-Meier estimator of the survival curves (figures 3.17 and 3.18) reflects the
relationships present in the INSEE mortality tables and my multiplying risk factor,
namely that the survival curves are lower for men, for smokers, for obese and for the
hypertense.

Figure 3.16: Mortality per systolic or diastolic blood pressure
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Figure 3.17: Survival curves per gender (left) and smoking habit (right)

Figure 3.18: Survival curves per obesity (left) and hypertension (right)

3.3.3 Limitations

The limitations to the realism of our simulated cohort are:

1. The mortality is mechanically higher than in a real population. Indeed, our base-
line for a "perfect" individual with 0 risk factor is taken as the INSEE 2016
mortality table, where the hazard rates are calculated over the entire French
population, thus accounting for a variety of risk profiles.

2. The sources on which our simulation relies are heterogeneous : the mortality and
gender ratio data come from INSEE 2016 data, thus representing the French
population structure, whereas the parts of smokers, obese and hypertense by age
category come from Canada 2019 data.

3. Our initial population is simulated according to overall population statictics, not
taking into account the selection bias at subscription of life insurance that would
favor initially healthy individuals, or originating from a specific socio-economic
level ; that point exacerbates even more point 1.

4. The correlations that have been introduced in the initial distribution of some
parameters are completely arbitrary and do not necessarily propagate to the
following time steps.
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5. The BMI and blood pressure trends are totally arbitrary and not changing, inde-
pendent of age, gender or initial values. The amplitude of the average evolution
and variability on a yearly basis is also arbitrary, constant and independent of
age, gender or past values.

6. Our model focuses only on cardiovascular-like risk, whereas mortality over an
entire population has much more varied causes. For example, four main causes,
all genders combined, account for two-thirds (67.1%) of deaths in France (2015
data): malignant tumors (28.7% of deaths), violent deaths (accidents, suicides,
and other external causes of death, 6.6%), circulatory system diseases (cardio-
vascular diseases, 24.5%), and respiratory system diseases (7.3%).

7. The number of medical factors considered is voluntarily very limited, and lack-
ing crucial sociological information such as the marital status or socioeconomic
category for instance. Furthermore, for the represented factors there could be a
considerable lack of diversity in the trajectories and correlations observed as they
have been simulated based on arbitrary modeling choices.

8. The data, though incomplete, is "too perfect" : there is no missing information,
which would be very unrealistic in a real-world medical study.

68



Chapter 4

Deep Learning in Survival Analysis

4.1 Deep Learning in a word

Deep learning is a class of machine learning algorithms using deep neural networks.
They are widely used in natural language processing (NLP), computer vision, reinforce-
ment learning, etc. They are composed of successive combination of scalar products of
weights by input features, which are then fed to a non-linearity to increase the repre-
sentational power (see figure 4.1). The optimization is based on gradient descent on a
predefined loss function.

4.1.1 Introduction

Interest of Deep Learning

Deep learning refers to a set of learning methods attempting to model data with com-
plex architectures combining different non-linear transformations. The domain has
gained huge interest by the variety of its applications, its adaptivity to all kinds of
problems, and its generally state-of-the-art performances on mildly to highly complex
problems. Potential applications are very numerous : these techniques have enabled
significant progress in the fields of sound and image processing, including facial recog-
nition, speech recognition, computer vision, automated language processing, text clas-
sification (for example spam recognition).

Deep learning is based on the use of neural networks, a very flexible framework for
modeling exotic distributions, thanks to its high number of parameters (typically in
the order of magnitude of the million) and use of more or less complex (depending
on the number of layers of the network) combinations of non-linear functions : the
elementary bricks of deep learning are these neural networks, that are combined to
form the deep neural networks.

There are several possible architectures for neural networks :
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• The multilayer perceptrons, also called dense or feed-forward;

• The convolutional neural networks (CNN), used for image problems;

• The recurrent neural networks, for sequential data such as text or time series.

They combine cascade of layers and need clever stochastic optimization algorithms,
initialization, and also choice of structure.

History

Deep learning is a class of algorithms that uses multiple layers of densely connected
perceptrons1 to progressively extract higher-level features (vectorial representations in
a latent, or hidden, space) from the raw input. For example, in image processing, lower
layers may identify texture, while higher layers may identify shapes or edges.

Modern deep learning models are based on artificial neural networks. The word "deep"
in "deep learning" refers to the number of layers through which the data is transformed,
corresponding to the "complexity" of the model function2. Deep models are often able
to extract better features than shallow models, hence extra layers help in learning the
features effectively and extracting signal efficiently.

Deep learning methods eliminate feature engineering by mapping data to compact
hidden representations akin to principal components. What’s more, deep learning al-
gorithms can be applied both to supervised or unsupervised learning tasks, which is a
huge advantage since unlabeled data are more abundant than labeled data.

4.1.2 Principles

Neurons and Activations

An artificial neuron is a function fj of the input x = (x1, . . . , xd) weighted by a matrix of
connection weights wj = (wj,1, . . . , wj,d), completed by a neuron bias bj, and associated
to an activation function φ, namely

yj = fj(x) = φ(< wj, x > +bj)

Figure 4.1 illustrates the general structure of an artificial neuron.
1The perceptron is a function that maps its input x to an output value f (wx+b), where w and b are

the weights and biases matrices optimized through back-propagation, and f a differentiable non-linear
activation function, see figure 4.1.

2This notion of complexity of the model function is quantified through the VC-dimension, but we
will not address this here.
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Figure 4.1: General representation of an artificial neuron (Perceptron)
Several activation functions can be considered :

• The identity function φ(x) = x : the utility of this function is very limited since
fj(x) is then a simple linear transformation of x, rendering the use of more than 1
layer unnecessary : an arbitrary number of successive linear transforms is equiv-
alent to one. Therefore, the activation function φ is usually taken non-linear.

A1 × (A2x + b2) + b1 = (A1 × A2)x + (A1b2 + b1)

• The sigmoid, or logistic, function φ(x) =
1

1+exp(−x) : it is a strictly increasing,
differentiable function that maps inputs to the ]0, 1[ range, with φ(0) = 1/2;

• The hyperbolic tangent, or tanh, function φ(x) = exp(x)−exp(−x)
exp(x)+exp(−x) : it is a strictly

increasing, differentiable function that maps inputs to the ] − 1, 1[ range, with
φ(0) = 0;

• The hard-threshold function φβ(x) = 1 [x ≥ β] : very often, β is taken equal to 0,
but it can also be an optimized hyperparameter. This activation function is less
used due to its lower representativity power ;

• The Rectified Linear Unit, or ReLU, function φ(x) = max(0, x) : this is a hugely
popular method since, contrarily to the sigmoid and tanh, it doesn’t have an
upward bound on its values. This function is not differentiable in 0 but in practice
this is not really a problem since the probability to have an entry exactly equal
to 0 is generally null. It does induce a so-called dead ReLU problem, related to
the vanishing gradient issue, which we will address later ; to curb this limitation,
it has a number of variants :

- Gaussian Error Linear Unit (GELU) : φ(x) = x.Φ(x), where Φ is the cumulative
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distribution function of the gaussian distribution ; this is the default activation
in BERT, a state-of-the-art NLP model ;

- Sigmoid Linear Unit (SiLU) : φ(x) = x.σ(x), σ the sigmoid function ;

- SoftPlus or SmoothReLu : φ(x) = ln(1 + ex) ;

- Exponential Linear Unit (ELU) : φ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if x > 0,

a(ex − 1) otherwise
A usual value for a is 1, with 0 this is just the standard ReLU ;

- Parametric ReLU : φ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if x > 0,

ax otherwise
When a is a positive, arbitrarily small ε, this activation is designated as Leaky
ReLU.

Figure 4.2 shows the general behaviour of these most common activation functions,
and figure 4.3 compares the different ReLU variants.

Figure 4.2: Common activations Figure 4.3: ReLU variants

Figure 4.4: Most common activation functions

4.1.3 Gradient Descent and Back-Propagation

Neural networks function by optimizing their set of parameters, i.e. the weights and
biases of all layers, θ = (W (1)

, b
(1)
, . . . ,W

(L+1)
, b

(L+1)) with L the number of layers in the
network. The main objective of the model function f is, for each input data Xi, to
predict the corresponding target Yi as accurately as possible.

To that purpose, we have to define a loss function L that is a metric of the error made
by the model (i.e. the distance between the prediction f (Xi) and the corresponding
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target Yi). There are a number of different loss functions, depending on the nature
of the problem (regression or classification) and the objective of the learner (ranking
problem, average accuracy, minimize extreme errors, etc). This loss function is what we
seek to optimize : we want to minimize (or maximize in case of an adequation metric)
the error of the model on the data is is confronted with.

The main requirement about the chosen loss function is that it must be differentiable :
in other words, we should be able to compute a gradient of the loss with respect to the
parameters of the model. Indeed, this gradient is the local slope of the loss function, it
gives the general direction to follow to maximize the objective function (the opposite
direction if you want to minimize it).

Some common loss functions are :

• Mean Squared Error : LMSE(ŶB, YB) = 1

∣B∣ ∑i∈B(Ŷi − Yi)2

• Mean Absolute Error : LMAE(ŶB, YB) = 1

∣B∣ ∑i∈B ∣Ŷi − Yi∣

In the case of classification :

• For binary classification : Cross-Entropy Loss :

LCE(ŶB, YB) = 1

∣B∣ ∑
i∈B

Yiln(Ŷi) + (1 − Yi)ln(1 − Ŷi)

• For multi-class classification : Multi-class Cross-Entropy Loss :

LMCCE(ŶB, YB) = 1

∣B∣ ∑
i∈B

K

∑
k=1

Y
(k)
i ln(Ŷ (k)

i )

where k is the number of classes ;

In the case of a ranking problem :

• Concordance index

• etc.

The stochastic gradient descent algorithm functions as follows :

Initialization : All parameters θ = (W (1)
, b

(1)
, . . . ,W

(L+1)
, b

(L+1)), with L the number of
layers in the network, are initialized ;

For N iterations :
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For each batch B of training data (Xi, Yi)i∈B :

θ = θ − lr
1
m ∑

i∈B

∇θL (F (Xi), Yi)

Here, lr is what we call a learning rate : it is the step size that is taken in the direction
of the negative gradient.

θ = θ − lr
1
m ∑

i∈B

∇θL (F (Xi), Yi)

Very often, a penalization term is added, also called l2 regularization or weight decay,
to ensure that the model doesn’t attribute too big weights to some parameters, thus
working on preventing overfitting. The lr term, called learning rate, corresponds to the
size of the step you take in the direction descending the gradient.

The vast majority of successful deep neural networks are trained using variants of
stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can
be categorized into two approaches :

1. Adaptive learning rate schemes, such as AdaGrad and Adam,

2. Accelerated schemes, such as heavy-ball and Nesterov momentum.

4.1.4 The Adam Optimizer

The Adam optimization algorithm is an extension to stochastic gradient descent that
has seen broader adoption for deep learning applications in computer vision and natural
language processing. Empirical results demonstrate that Adam works well in practice
and compares favorably to other stochastic optimization methods.

Adam (ADAptative Moment estimation) is based on adaptive estimates of lower-order
moments (first and second momentum). The method is very easy to implement, com-
putationally efficient, and is well suited for problems that are large in terms of data
and/or parameters. Adam can also be used in problems with very noisy or sparse gradi-
ents. The hyper-parameters have intuitive interpretations and most of the time require
little tuning.

Adam is different from classical stochastic gradient descent algorithms : indeed, stochas-
tic gradient descent maintains a single learning rate α for all weight updates and the
learning rate does not change during training. A learning rate is maintained for each
network weight (θ) and separately adapted during the learning process. However, Adam
combines the advantages of two other extensions of SGD:
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Figure 4.5: The Adam algorithm for stochastic optimization
1. Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter

learning rate, therefore improving performance on problems with sparse gradients
;

2. Root Mean Square Propagation (RMSProp) that also maintains per-parameter
learning rates, that are updapted based on the average of recent magnitudes of
the gradients for the weight. This is beneficial on noisy, non-stationary problems.

The Adam algorithm construction is illustrated on figure 4.5. Let f (θ) be the objective
function (loss function, depending on the weights θ of the model).

f (θ) is assumed to be a stochastic scalar function that is differentiable with respect to
the parameters θ (weights). We are interested in minimizing the expected value of this
function, E[f (θ)] with respect to its parameters θ. We call f1(θ), ..., fT (θ) the realisations
of the stochastic function at timesteps 1, ..., T of the training epoch. The stochasticity
stems from the evaluation at random subsamples (minibatches) of datapoints : for each
time step t, the function is not evaluated on the same batch of data. With gt = ∇θft(θ)
we denote the gradient, i.e. the vector of partial derivatives of ft, w.r.t θ evaluated at
timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the
squared gradient (vt) where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential
decay rates of these moving averages. The moving averages themselves are estimates
of the first moment (the mean) and the second raw moment (the uncentered variance)
of the gradient. We have to be careful here that the second moment is not the variance
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E [(gt − E(gt))2] of the gradient, but the squared gradient E [g2
t ], which is more tricky

to interpret.

These moving averages are initialized as vectors of 0’s, leading to moment estimates
that are biased towards zero, especially during the initial timesteps, and especially
when the decay rates are small (i.e. the β are close to 1). The good news is that this
initialization bias can be easily counteracted, resulting in bias-corrected estimates m̂t

and v̂t.

It is interesting to analyse the relationship between the hyperparameter β1 (first mo-
ment) and dropout effect. This parameter modules how much importance you put on
past gradients, compared with the newly calculated gradients, when computing the
update for a weight. The higher β1, the more importance you put on past gradients,
and the less sensible you are to brutal fluctuations of the gradients. It is noticeable
that the effects of dropout and variations of β1 compensate each other : the higher p,
the more fluctuating m̂t is, the higher β1, the less fluctuating m̂t is ; p and β1 therefore
have compensating effects.

4.2 Deep Learning for Sequential Data

4.2.1 Recurrent Neural Networks

In what precedes, we have seen that deep learning has recently been introduced in the
tools library available for survival analysis. In this spirit, it makes sense to consider
using dynamic deep learning models to account for the effect of time-varying covariates
: they are very common and have been hugely developed mainly for natural language
processing (NLP) problems, where sequentiality (the order of words in a sentence) is
fundamental to the understanding of the problem.

Recurrent neural networks (RNNs) are the state of the art algorithm for sequential
data and are used in all kinds of applications from time-series financial data to natural
language processing. It is the first algorithm that remembers its input, due to an
internal memory, which makes it perfectly suited for machine learning problems that
involve sequential data. It is one of the algorithms behind the scenes of the amazing
achievements seen in deep learning over the past few years. In this part, we’ll cover the
basic concepts of how recurrent neural networks work, what the biggest issues are and
how to solve them.

RNNs are a powerful and robust type of neural network, and belong to the most
promising machine learning algorithms in use because it is the only one with an internal
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Figure 4.6: Recurrent and feed-forward architectures
memory. Like many other deep learning algorithms, recurrent neural networks were
initially created in the 1980’s, but only in recent years the humungous increase in
computational power along with the the massive amounts of data have they become
widely used. Long short-term memory (LSTM), that solve the vanishing gradient issue,
were introduced in the 1990’s.

Because of their internal memory, RNNs can remember important things about the
input they received, which allows them to be very precise in predicting what’s coming
next. This is why they’re the preferred algorithm for sequential data like time series,
speech, text, financial data, audio, video, weather and much more. Recurrent neural
networks can form a much deeper understanding of a sequence and its context compared
to other algorithms.

RNNs and feed-forward neural networks get their names from the way they channel
information. In a feed-forward neural network, the information only moves in one di-
rection : from the input layer, through the hidden layers, to the output layer. The
information moves straight through the network and never touches a node twice (see
figure 4.6). Feed-forward neural networks have no memory of the input they receive
and are bad at predicting what’s coming next. Because a feed-forward network only
considers the current input, it has no notion of order in time. It simply can’t remember
anything about what happened in the past except its training.

In a RNN on the other hand, the information cycles through a loop (see figure 4.6).
When it makes a decision, it considers the current input and also what it has learned
from the inputs it received previously. A usual RNN has a short-term memory : this is
due to the vanishing gradient problem inherent to the structure of the RNN. This is
easy to see if you consider the usual activation functions of neural networks :

• sigmoid : dσ(x)
dx

= σ(x)(1 − σ(x))

• hyperbolic tangent : dtanh(x)
dx

= 1 − tanh2(x)
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Figure 4.7: Mapping structures for RNNs
• ReLU : dR(x)

dx
= 1 [x > 0]

Therefore, you can notice that all have a norm always comprised between 0 and 1,
therefore the chain rule in the back-propagation of gradients will make these norms
multiply at each time step and the gradient will mechanically quickly vanish after a
few time steps. To solve this issue, the LSTM have a long-term memory (more on that
later).

Therefore, a RNN has two inputs: the present and the recent past. This is important
because the sequence of data contains crucial information about what is coming next,
which is why a RNN can do things other algorithms can’t. A feed-forward neural
network assigns, like all other deep learning algorithms, a weight matrix to its inputs
and then produces the output. Note that RNNs apply weights to the current and also
to the previous input. Furthermore, a recurrent neural network will also tweak the
weights for both through gradient descent and back-propagation.

Also note that while feed-forward neural networks map one input to one output, RNNs
can map one to many, many to many (translation) and many to one (classifying a
voice), see figure 4.7. This will be particularly useful in our case, since we want to
predict either a death probability at each time step, or an overall risk score, for a
sequence of observed medical covariates (bmi at different time steps for example) or a
single initial observation.

4.2.2 Long Short-Term Memory

Long short-term memory networks (LSTMs) are an extension for recurrent neural
networks, which basically extends the memory. Therefore it is well suited to learn from
important experiences that have very long time lags in between (as in our case, where
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Figure 4.8: An illustration of an LSTM cell
survival durations are often extended over years or decades).

The units of an LSTM are used as building units for the layers of a RNN, often called an
LSTM network. LSTMs enable RNNs to remember inputs over a long period of time.
This is because LSTMs contain information in a memory, much like the memory of a
computer. The LSTM can read, write and delete information from its memory.

This memory can be seen as a gated cell, with gated meaning the cell decides whether
or not to store or delete information (i.e., if it opens the gates or not), based on the
importance it assigns to the information. The assigning of importance happens through
weights, which are also learned by the algorithm. This simply means that it learns over
time what information is important and what is not.

In an LSTM you have three gates: input, forget and output gate. These gates determine
whether or not to let new input in (input gate), delete the information because it isn’t
important (forget gate), or let it impact the output at the current timestep (output
gate). On figure 4.8 is an illustration of an LSTM cell with its three gates.

4.3 Survival deep learning

Over the past years, a significant amount of research in machine learning has been
conducted in combining survival analysis with neural networks. With the development
of deep learning technologies and computational capacities it is possible to achieve
outstanding results and implement a range of architectures on very large datasets with
different underlying methodologies and more specific learning inside.

Deep neural networks used in survival analysis can be split into two main categories :
Cox-based networks, that optimize variants of the Cox-likelihood as their loss functions,
and other models, that include a very classic binary classification model (survives /
dies) by optimizing the well-known binary cross-entropy loss, but also more advanced
models based on individual risk assessment with ranking metrics, recurrent models,

79



etc.

4.3.1 Cox Proportional Hazards Models

The initial adaptation of neural networks to a survival analysis problem (Farragi and
Simon, 1995) was based on the generalization of the Cox proportional hazards model
with only a single hidden layer. The main focus of the initial model was to learn
relationships between primary covariates and the corresponding hazard risk function.
Following development of the neural network architecture with Cox regression proved
that in real-world large datasets with non-linear interactions between variables it is
rather complicated to keep the main proportionality assumption of Cox regression
model. However, Farragi and Simon’s network extended this non-linearity quality.

The traditional Cox regression consists in optimizing the Cox partial likelihood. This
likelihood is defined with the following formula with parametrized weights β:

L(β) = ∏
i∶ei=1

exp(ĥβ(xi))
∑j∈R(ti) exp(ĥβ(xj))

where ti, ei, xi are time, event, baseline covariate data in the i-th observation respec-
tively. More explicitly, this is a product of probabilities at the time ti for the i-th
observation given the set of risk individuals (R) that are not censored and have not
experienced the event of interest before time ti.

Cox neural networks are Cox models where the neural network implements the function
gβ, and the losses used are variants (with penalization, log, etc) of the Cox partial
likelihood.

DeepSurv In the 2016 paper DeepSurv: personalized treatment recommender system
using a Cox proportional hazards deep neural network, Katzman et al. proposed a more
sophisticated deep learning architecture named DeepSurv. DeepSurv is an extension
of Simon-Farragi’s model with more hidden layers and use modern techniques for con-
trolling the gradient descent. Similar to Katzman et al.’s feed-forward neural network,
the model estimates each individual’s characteristics on their hazard rates.

l(θ) = − ∑
i∶Ei=1

(ĥθ(xi) − log ∑
j∈R(Ti)

e
ĥθ(xi))

Generally, the structure of this neural network is quite straightforward. Comparing
to Simon-Farragi network, DeepSurv is a configurable with multiple number of hidden
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Figure 4.9: Tensor view Figure 4.10: Layer view

Figure 4.11: DeepSurv architecture
layers. It showed improvements of the Cox Proportional Hazards model and the perfor-
mance metrics when dealing with non-linear data. In addition to that, while estimating
the log-risk function h(X) with the Cox Proportional Hazards model they used the lin-
ear combination of static features from given data X and the baseline hazards. The
main impact of DeepSurv was to drop the proportional hazards assumption out.

The input data X is represented as a set of observed covariates. Hidden layers in this
model are fully-connected nonlinear activation layers with not necessarily the same
number of nodes in each of them, followed by dropout layers to avoid overfitting (see
previous introduction to deep learning). The output layer has only one node with a
linear activation function which gives the output ĥθ (log-risk hazard estimations) (see
figure 4.11).

4.3.2 Static Architectures

Any deep learning architecture can be adapted to modeling survival durations (regres-
sion problem) or survival at a given term (binary classification problem). A notable one
is DeepHit, presented hereunder, but there are a wide variety of other models.

DeepHit DeepHit is a deep neural network for survival analysis, introduced by
Changhee Lee, William R. Zame, Jinsung Yoon and Mihaela van der Schaar in 2018.
Its specificity relies in dealing with competing risks3.

The goal is to estimate the joint distribution of the first hitting time and competing
events. DeepHit is a multi-task network (Collobert and Weston 2008) which consists of

3A competing risk is an event whose occurrence masks the outcome of the primary event of inter-
est: it is equivalent to censorship. For example, in a study examining time to death attributable to
cardiovascular causes, death attributable to non-cardiovascular causes (e.g. a car accident, prostate
cancer, etc) is a competing risk. Competing risks occur frequently in the analysis of survival data,
particularly when durations are quite extended in time.
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Figure 4.12: DeepHit Architecture
a shared sub-network and N cause-specific sub-networks. The architecture differs from
a conventional multi-task network:

• a single softmax layer as the output layer, to ensure that the network learns the
joint distribution of N competing events and not the marginal distributions of
each event ;

• a residual connection from the input covariates into the input of each cause-
specific sub-network, jumping over the 2 feed-forward layers, so that the actual
covariates and their embeddings are concatenated and provided as an input to
each sub-network.

Competing risks could prove very useful in an insurance context, since causes of death
are numerous, some can be highly correlated (e.g. heart attack and stroke are both
cardiovascular-related causes of death) and others independent (e.g. breast cancer and
Alzheimer disease) or even non-medically related (e.g. car accident, murder). They
could also be of great help in prevention about behaviors that create multiple competing
risks, e.g. eating junk food.
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4.3.3 Recurrent Deep Learning Models

As an alternative approach, fully parametric survival models use Recurrent Neural
Network to sequentially predict a distribution over the time to the next event: RNN-
Surv (2018), Weibull Time-To-Event RNN (2017), DRSA (2018) etc.

Contrary to Cox-based models, which assume an invariant structure of the risk through
time, recurrent neural networks are able to model time varying effects. To be applied,
the time of each individuals must be discretized into small intervals.

The use of recurrent models is particularly interesting in life insurance, where we want
to be able to use updates on a patient’s health (for example, whether he stopped
smoking, or gained 20kg) to update the predictions on his survival probabilities.

Time varying covariates can be very useful to handle new business usecases in insurance
and provide preventive health services. With the increase of IoT devices on the market
(connected weight scale, smart watch, ...) insurers will be able to access more covariates
that evolve through time. A deep understanding of RNN models will help insurers to
better model the dynamic of the portfolio through time.

Weibull Time To Event RNN

The Weibull-Time-To-Event-RNN is a framework for prediction of the time to the next
event applicable when we have time-varying covariates or time series of varying lengths.
The model estimates the distribution of time to the next event as having a discrete or
continuous Weibull distribution with parameters being the output of a recurrent neural
network. The model is trained using a special objective function (log-likelihood-loss for
censored data) commonly used in survival analysis.

The Weibull Distribution : The Weibull distribution is a continuous probability
distribution, first identified by Fréchet (1927). It is named after Swedish mathematician
Waloddi Weibull who described it in 1951.

It is defined by its cumulative distribution function :

F (x) = 1 [x ≥ 0] [1 − exp−(
x
λ
)k]

where λ > 0 and k > 0 are respectively the scale and shape parameters. The probability
density functions derived from the cumulative distribution, for different values of the
scale and shape parameters, are pictured in figure 4.13.

More particularly, one can note that :
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Figure 4.13: Probability Distribution Functions of Weibull Laws
• k < 1 : the mortality rate decreases over time, for example if there is significant
infant mortality and the "fragile" individuals are progressively weeded out of the
population.

• k = 1 : the mortality rate is constant over time, this might suggest that death
is caused by random external events : indeed, we fall back on an exponential
distribution, a no-memory law.

• k > 1 : the mortality rate increases with time : there is an "aging" process.

Deep Recurrent Survival Analysis

Deep Recurrent Survival Analysis, introduced in 2018 by Kan Ren, Jiarui Qin, Lei
Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu and Yong Yu, is very similar to RNN-
Surv, the main object of this study, with 2 main differences :

• The use of a RNN instead of a LSTM ;

• The prediction of the hazard rates instead of the survival probabilities.

I will not detail its structure as it is identical to RNN-Surv.

4.4 RNN-SURV: a Deep Recurrent Model for Sur-

vival Analysis

The main focus of this actuarial thesis has been to implement and improve a model
presented in the paper RNN-SURV: a Deep Recurrent Model for Survival Analysis by
Eleonora Giunchiglia, Anton Nemchenko, and Mihaela van der Schaar (2018).

4.4.1 Model

The authors place themselves in a discrete time frame, dividing the maximal observed
time into K intervals (t0, t1], . . . ,(tK1, tK]. They also assume that the characteristic
function modeling Ti is constant within each interval (tk1, tk] with k = 1, ..., K, meaning
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Figure 4.14: RNN-SURV with 2 feedforward layers, followed by 2 recurrent
layers.
that the study focus on the mortality per interval, and supposes the risk uniform within
the time interval. Given a patient i, the purpose of the model is to output both an
estimate ŷki of the survival probability yki for the kth time interval:

y
k
i = P(Ti > k∣Ti ≥ k)

and an estimated risk score r̂i approximating the individual’s relative risk ri:

∀i, j, Ti < Tj ⟺ ri > rj

The model’s architecture is depicted in figure 4.14. There are K inputs, which are
vectors of the covariates at each time step t = 1...K, concatenated with the the time
value. These inputs are fed to what the authors call embeddings layers, which are
feedforward layers aiming at representing the vector of covariates in a latent space.
This latent representation becomes the input, at each time step, of the LSTM.

Several remarks are necessary on this architecture :

• The feedforward layers are called embeddings because they output a vectorial rep-
resentation in a latent-space, lower dimensional than the inputs, but they are not
strictly speaking embeddings in an NLP sense since they are not pretrained on an
unsupervised problem to build pretrained vectorial representations. In NLP, the
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input space is by definition discrete (words), whereas here our input can be con-
tinuous on some covariates (continuous values like blood pressure for instance),
therefore the latent space representations are also partially continuous.

• Here, the so-called embeddings layers are optimized during training with the rest
of the network, that is not the case in a NLP framework where the embeddings
layers are first pretrained, and then frozen during training of the objective model.

The covariates must be provided at each of the K timesteps. However, they may not
be observed at each period :

1. In the general case, it is very hard to have regular observations of medical co-
variates for all patient across time. Most of the time, relevant medical features
are only measured when a patient has a medical appointment, which is often
very irregular, and not all of them (BMI, blood pressure...) are systematically
measured at each appointment.

2. The model takes a input a fixed number of K covariates vectors at K time steps,
but some patients may die before reaching the Kth period, or leave the study for
some reason (stopped showing us to doctor’s appointments, changed region, died
of some other cause than the one being studied...)

In the first case, there are several ways to fill values for periods where we have no direct
observation of the covariates :

• A forward fill of the last observed value ;

• A backward fill of the next observed value ;

• An interpolation of the last and next observed value.

I have chosen to implement the first strategy, for 2 reasons :

• The second and third options imply some kind of data leakage, that is to say, a
partial view of the future that is somehow making the model "cheat" when asked
to predict the future ;

• It is the only one implementable on real-time data.

In the second case, we encounter a very common problematic in NLP where sequences
(sentences) do not all have the same length. If the sequence is shorter, it is filled to the
maximal length with a padding vector, an embedding of a token that is not a word of
the dictionnary and that has been pretrained to represent the < PAD > token, a blank
filling character. In the case of survival analysis, we have 2 options :
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• As in NLP, introduce a < PAD > vector of covariates that is representative of
no actual values of the features ; the main issue here will be that contrarily to
NLP, we cannot pretrain this embedding vector so that the embeddings layers
can learn their own representation, we have to choose arbitrary values

• As before, just forward fill the last observed vector of covariates.

An implementation of both methods will show no striking difference in the results. The
only notable fact is that, in the case of the < PAD > vector, categorical data is one-hot
encoded using as many indicator features as classes, which is redundant since they sum
to 1 the bias of each neuron already accounts for a constant.

As we need to differentiate a padding input from an actual input, we will add a feature
that is an indicator is_pad, meaning that at each time step is equals 0 if the individual
is still present in the database and 1 if it is not (censored or dead).

Finally, to account for the time-evolving aspect, the authors concatenate the vector of
covariates with k the period number or date. Here, I took the liberty to not add this
period number, and simply rely on the moving age of the individual (increasing by 1 at
each time step) and the bias parameter of the LSTM which, thanks to the recursivity,
should bear information of the seniority of the individual in the observations (is it the
first time step we oberve him at age 43, or is it actually the 10th timestep and he
entered at age 34 ?).

4.4.2 The Concordance Index

One of the most popular performance measures for assessing learned models in survival
analysis is the Concordance Index. The C-index is a good indicator of the ranking
performance of a model.

Ranking Problem

The general idea when using the concordance index is that we’re not interested in the
actual predictions, but rather at how our model orders the individuals. For example,
we don’t want to know if someone will die at time step 5 or 6, but rather if he will die
before or after some other individuals.

Casting survival analysis as ranking problem is an elegant way of dealing not only
with the typically skewed distributions of survival times, but also with the censoring
of the data: Two subjects’ survival times can be ordered not only if both of them are
uncensored but also if the uncensored time of one is smaller than the censored survival
time of the other. This can be visualized by means of an order graph G = (V ,E ), where
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the set of vertices V represents all the individuals, censored or not.

Existence of an edge Eij is equivalent to having δi = 1, Yi ≤ Yj

An edge cannot originate from a censored point, but it can end there. In other words,
each oriented edge represents the relationship dies before.

If we denote C the set of edges Eij of a given graph, we have

C = {(i, j)∣δi = 1 ∧ (Yi ≤ Yj)}

In the previous example, we have :

C = {(A,A∣B∣C∣D∣E∣G∣H); (B∣H,B∣C∣D∣E∣G∣H); (D,G∣E); (E,E)}

It is important to note that the pairs of C are ordered. Intuitively speaking, they can be
understood as a mapping, for all uncensored individuals (for whom we have complete
observations), to all the individuals who live at least as long as them (no matter if
the remaining survival time is observed in its entirety or censored at some ulterior
point). This is coherent with the purpose of a ranking metric : we want to compare an
individual for whom we have a death time to all the individuals known to have outlived
him, and check if the ordering predicted by the model is compatible.

Example

The following cohort can be represented by the order graph in figure 4.15.

i A B C D E F G H
Yi 1 2 3 4 5 0 4 2
δi 1 1 0 1 1 0 0 1

The Concordance Index

The evaluation will therefore be based on pairs of individuals : for all individuals i, j,
we will check whether our predictions order them similarly to the ground truth, or not.
That gives us the following definition of the metric :

C =
1

∣E ∣ ∑
Ei,j

1 [f (xi) ≤ f (xj)]
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A

YA = 1, δA = 1

BYB = 2, δB = 1 H YH = 2, δH = 1

C
YC = 3, δC = 0

DYD = 4, δD = 1

EYE = 5, δE = 1

F YF = 0, δF = 0

G
YG = 4, δG = 0

Figure 4.15: Order graph for the example cohort
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Or, to write it explicitly without referencing to the order graph :

C =

∑i,j δi1 [Yi ≤ Yj]1 [f (xi) ≤ f (xj)]
∑i,j δi1 [Yi ≤ Yj]

Similarly to the AUC or other ranking metrics, C = 1 corresponds to the best model
prediction : it is achievable if and only if

∀i, j (δi = 1, Yi ≤ Yj) ⟹ f (xi) ≤ f (xj)

which is the case if all predicted survival times are ordered like the life durations, and
C = 0.5 represents a random prediction.

Here note that if the survival times are, for example, (Ti = 5, Tj = 6), and our model
predicts (T̂i = 1, T̂j = 24), they are in the right order and the scoring will be the same as
with having predicted the actual targets (T̂i = 5, T̂j = 6), even though the predictions
are quite far from the real values, whereas if we predict (T̂i = 5.51, T̂j = 5.49) our
predictions are much closer to the ground truth but they are not in the right order so
it will be considered as a false prediction.

Transposition to the risk score

In their 2018 paper RNN-SURV: a Deep Recurrent Model for Survival Analysis, Giunchiglia,
Nemchenko and Van Der Schaar propose using the concordance index as an optimiza-
tion metric for a deep recurrent neural network. To that end, they compute a risk
score r̂i for all individuals within a batch and then evaluate their ranking using the
C-index.

Definition 4.4.1. In the case of a predicted risk score r̂ and not a survival time T̂ ,
the C-index becomes :

C =

∑i,j δi1 [Yi ≤ Yj]1 [f (xi) ≥ f (xj)]
∑i,j δi1 [Yi ≤ Yj]

Adaptation to a loss function

The obvious issue with the concordance index is that, as it is a counting metric (as-
sessing how many pairs of individuals are in the right order), it does not satisfy the
main requirement we have for a loss function, namely to be nicely derivable. Therefore,
we will transform the C-index in a loss that will have the same ranking properties but
that will enable gradient descent.
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In their 2007 paper On Ranking in Survival Analysis: Bounds on the Concordance
Index, Raykar, Steck, Krishnapuram, Dehing-Oberije and Lambin introduce a lower
bound on the C-index that will be easier to optimize.

We will first try to find a lower bound on the indicator function. To that end, consider
the sigmoid function

σ(z) = 1

1 + e−z
⟺ log(σ(z)) = −log(1 + e−z)

We have : ∀z 0 < σ(z) < 1. Therefore : If z ≥ 0, 1 [z ≥ 0] = 1 and :

0 < e
−z
≤ 1 ⟹ 0 < log(1 + e−z) ≤ log(2) ⟹ −1 ≤

log(σ(z))
log(2) < 0

0 ≤ 1 +
log(σ(z))
log(2) < 1 = 1 [z ≥ 0]

If z < 0, 1 [z ≥ 0] = 0 and :

1 < e
−z
⟹ log(2) < log(1 + e−z) ⟹ log(σ(z))

log(2) < −1

1 +
log(σ(z))
log(2) < 0 = 1 [z ≥ 0]

We conclude :
∀z, 1 +

log(σ(z))
log(2) < 1 [z ≥ 0]

In definition 4.4.1 of the C-index, we can reformulate

1 [f (xi) ≥ f (xj)] = 1 [z ≥ 0] with z = f (xi) − f (xj)

As everything is positive, we deduce a lower-bound on the C-index :

C >
1

∑i,j δi1 [Yi ≤ Yj]
∑
i,j

δi1 [Yi ≤ Yj] (1 +
log(σ(f (xi) − f (xj)))

log(2) )
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And finally, the authors define their loss L2 :

L2 = −
1

∑i,j δi1 [Yi ≤ Yj]
∑
i,j

δi1 [Yi ≤ Yj] (1 +
log(σ(f (xi) − f (xj)))

log(2) )

= −
1

∣Ei,j∣
∑
Ei,j

(1 +
log(σ(f (xi) − f (xj)))

log(2) )

You can see from what precedes that it is computationally equivalent (in cost) to
compute the exact C-index or its lower bound, which becomes an upper bound on the
loss L2.

The interest of using the lower bound instead of the explicit formula for the C-index
lies in the fact that you can’t compute a gradient for an indicator function, whereas
the sigmoid function is nicely derivable, which will allow us to optimize our model
with respect to the C-index, therefore optimizing its ranking capacity. By optimizing
the upper bound on the L2 loss, we guarantee that the loss is decreasing towards its
minimum value of −1, even if we don’t have the explicit C-index it is sufficient at this
stage.

The second formulation of L2 can seem much more natural to understand, but the
reason why I elaborated on the first formulation is that I implemented the loss by the
Hadamard product of the

(1 +
log(σ(f (xi) − f (xj)))

log(2) )
i,j

matrix with a mask, corresponding to the

(δi1 [Yi ≤ Yj])i,j

matrix. This the same methodology that will be used for L1, see next section.

Comments

We have seen previously that the sign of 1+ log(σ(z))
log(2) is the sign of z. Therefore, you can

notice that the model is able to "compensate" positive loss from misranked individuals
with negative loss from correctly classified individuals, therefore optimizing the lower
bound on the C-index (upper bound on the loss) would not necessarily guarantee a good
ranking fit. However, note that the negative values cannot reach lower than -1, whereas
the positive values can theoretically skyrocket to +∞ : this limits the compensation
ability of the model.
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It seems obvious, at first sight, that the L2 loss is highly dependent on the batch size :
the bigger the batch, the more individuals we have to compare, and probably the better
the final, optimized ranking will be. This will be an issue at training time, since we will
be limited in the maximal batch size acceptable by the machine’s memory depending
on the model size.

One has to wonder what values this L2 loss would take in case this sample is empty,
that is to say, if we have a batch where all individuals are censored (or empty). The
L2 loss varies from −1 (perfect ranking) to +∞ ; we decided to put the default value
in that case at 0, for several reasons :

• First, it corresponds to the value in the case where all the predicted risk scores
are equal :

σ(0) = 1/2, 1 +
log(sigma(0))

log(2) = 0

Therefore it corresponds to the case where the model has no information about
the rankings of the individuals ; in the case with no individuals, we also have no
information.

• Second, it enables us to have a more coherent, smoother definition of the loss
than is stated in the paper : instead of filtering individuals in the sum (which is
costly), we just apply a mask to the matrix of predictions, which is much more
efficient. In the case with no individuals, we just mask all the matrix.

• Third and finally, it is coherent with the expression of a sum.

4.4.3 Censored Cross-Entropy Loss

Optimizing the upper bound on the C-index is not a sufficient optimization method,
since it has no direct effect on the actual predictions (hazard rate, survival times,
etc).

Therefore, Giunchiglia et al. introduce a second loss metric L1, which is a censored
cross-entropy loss (refer to the presentation of the binary cross-entropy loss for further
details), to account for the accuracy of the prediction of the survival probability at
each time step k :

yk = P(T > tk∣T > tk−1) = P(T > tk∣T ≥ tk), y0 = P(T > t0)

(the conditional probability doesn’t make sense at time step 0 since the individual is
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necessarily alive at entry in the portfolio).

L1 = −
K

∑
k=1

∑
i∈Uk

(1 [Yi > tk] log(ŷ(k)
i )+

(1 − 1 [Yi > tk])log(1 − ŷ(k)
i )

= −
K

∑
k=1

∑
i

(δi + (1 − δi)1 [Yi > tk])(1 [Yi > tk] log(ŷi)+

(1 − 1 [Yi > tk])log(1 − ŷi))

With Uk = {i∣δi = 1 ∨ Ci > tk}, the set of individuals who, at time tk, are uncensored,
meaning that either they will be censored later or they will never be, no matter whether
they are dead or alive at the moment.

Equivalently speaking, it is the set of individuals for whom we do know, at time tk, that
they are either dead or alive (that makes sense since, in our model, we have a third
possible state, censored, where we don’t know if the individual is dead or alive).

This is a standard cross-entropy loss, except that it is calculated on the individuals
that either have complete observations, no matter whether they have died yet or not,
or will be censored but are not yet. To sum things up, only complete informations up
to this point are taken into account.

Similarly to L2, one has to wonder what values the L1 loss would take in the case
where the sample is empty. The default value is 0, which corresponds to the case where
the model is perfect (ŷ = y), it does make sense since in a case where you have no
information at all, there is nothing to optimize. It also makes sense when the expression
is a sum.

The use of a binary cross-entropy loss can make one think of a binary classification
problem. Indeed, with respect to the L1 loss, the problem we optimize isK classification
problems of knowing whether the individual is still alive or not at each time step.

This loss is computed using a mask matrix, similarly to the C-index, where the mask
matrix is multiplied with the uncensored loss with a Hadamard product, which accounts
for the Uk subset.

4.4.4 Optimization

The 2 previous losses are linearly combined into a final loss which is being optimized
during the training:

L = αL1 + βL2
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It is equivalent, by a multiplying factor, to

L = L1 + βL2

In machine learning in general, and in deep learning in particular, one must always be
very cautious to avoid over-fitting. In our case, a first measure of control is to ensure
our model doesn’t have more parameters than there are data points in the dataset we
are training on ; there are also other features in the structure of the model and the
optimization strategy which we explain in the following.

L2 Penalization

We optimize the linear combination of the losses using the Adam optimizer, with an
l2 regularization (also called weight-decay), which penalizes the loss by an additional
factor β∣∣θ∣∣22 where θ is the matrix of weights of the model and β an arbitrary parameter
settled at 10

−5 (which is a common default value for the weight decay). This helps ensure
that the model will not overfit by attributing arbitrarily high values to some of the
weights.

Dropout

Dropout is a very common regularization method in deep learning, introduced by Nitish
Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov in
the 2014 paper Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
It consists, during the course of the training, of randomly setting the outputs of some
nodes to 0, so that to force the model not to attribute too much weight to one node in
particular, thus preventing overfitting. The nodes are randomly selected on a Bernoulli
law of probability p, and set to 0 ; the others are multiplied by a 1

1−p
> 1 factor,

so as to preserve the mean value of the nodes and avoid mechanically vanishing the
gradients.

The overall process of dropout is illustrated in figure 4.16. Of course, this random
setting of a fraction p of the weights to zero is changing at each time step, so that it
averagely hits all weights during the training process, and isn’t applied in the validation
and testing phase, where we are not optimizing anymore but evaluating the quality of
our model on unseen data. We have seen previously that the effects of dropout and first
momentum regularization of the Adam optimizer compensate each other ; thus, I have
fixed the values for the first and second momentum at their standard default values
(β1 = 0.9, β2 = 0.999), and I have selected the dropout rate using a cross-validation
scheme.
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Figure 4.16: The mechanism of Dropout during the training phase
Learning rate scheduler

The proper setting of the learning rate is essential for learning. Indeed, if the learning
rate is too big, one might miss the global minimum ; it it is too small, one might
fall in a local minimum and not find the global minimum. Therefore, a number of
different learning rate schedulers exist, enabling to adapt the learning rate during
training : warm-up for starting at a mid-value, increasing learning rate once the slope
of the gradient has been found ; cosine scheduler, for alternating between high and low
values during training ; and several decrease schedulers (exponential, linear, ...) to gain
precision at the end of learning.

My training has been set to start with a learning rate of 10
−2, and is scheduled on an

exponential decrease :
lr(epoch) = 10

−2
× 0.995

epoch

As my training runs for 50 epochs, the learning rate ends on a value of ≈ 0.008.

Gradient clipping

I choose to present here the gradient clipping method that I implemented. The study
of gradient values (see figure 4.17) shows very clearly that we have a vanishing gradient
problem, thus harming training. It is therefore necessary to ensure gradients stay within
a specified range of amplitude, so that the learning rate actually enables us to decide
on the size of the training step we take descending the gradient.

The first idea was to add gradient clipping to the Adam with weight decay optimizer we
are using. Gradient clipping should indeed help avoid vanishing or exploding gradients.
Exploding gradients can occur when the gradient becomes too large and error gradients
accumulate, resulting in an unstable network ; on the contrary, due to the use of the
sigmoid activation function, vanishing gradients occur when the norm of the gradients
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Figure 4.17: Gradient Flow at Epoch 1, No Clipping
tends towards zero, particularly in recurrent networks, and thus the model doesn’t
learn anymore. Gradient clipping prevents this issue in the gradients that mess up the
parameters during training.

There are two possible kinds of clipping :

1. Norm clipping to a value λ :

clipped(gt) = min(λ, ∣∣gt∣∣).
gt

∣∣gt∣∣

It is not fundamentally very different from just applying a lower learning-rate,
but not strictly equivalent, since it softens the regularizing impact of the first
momentum in the Adam optimizer.

2. Value clipping to λ : for each coordinate of gt, you clip it into the interval [−λ,+λ].
The sign of each coordinate is unchanged, you just cannot move too much in any
direction.

Each method has its specificity. Namely, norm clipping is good for preserving the
overall direction of the gradients ; however, if one component is huge comparatively
to the others, normalizing will have the effect of crushing the other components to
zero, thus not optimizing any more in these directions. This bias is avoided with value
clipping, where smaller gradient values are preserved, however the overall direction of
the gradient vector is modified.
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Figure 4.18: Illustration of the clipping by norm and value
An instinctive representation of that nuance, as in figure 4.18 in 2D, is imagining your
gradient space as a plane. Norm clipping is equivalent to restricting your gradients to
the circle centered on 0 of radius λ, and value clipping is equivalent to restricting your
gradients to the square whose corners are (±λ,±λ).

From that point, by looking at the gradients values, I noticed that starting from clipping
values of 10

−3 or 10
−4, nearly 100% of all gradients coordinated were being clipped. That

is to say, they were replaced by their sign times the clipping value. This is what lead me
to implementing a sign-Adam : why not just take the sign of each gradient coordinates,
still allowing zeros in case of null coordinates ? Here again, it puts all gradient values
to ±1 so you have to rescale the learning-rate, this time by dividing it by 10. It didn’t
work as well as expected. This is because the rescaling with the second moment actually
made the two methods unequivalent.

The final clipping method I adopted is a mix between value and norm clipping:

1. For all matrices of weights (there is one by layer), divide the gradients by their
mean absolute value so that the mean absolute value of gradients is 1;

2. Clip gradient values to ±2.

The order of steps 1 and 2 is important (see figures 4.19 and 4.20). Indeed, due to the
recursive nature of the model and the sigmoid activation functions, we mechanically
induce a vanishing gradient problem, as is very clear on figure 4.17. Therefore, clipping
gradient absolute values to 2 will ensure we have a very small average absolute value,
and dividing all gradients by this value will make the biggest gradients explode, as
seen in figure 4.20. This is why dividing by the average value first, to amplify vanished
gradients, and then clipping the exploding values to 2 is a much more efficient method
to ensure we keep the gradients within a suitable range, see figure 4.19.

We end up with a gradient which is essentially determined by its sign, with a controlled
range of amplitude, enabling full use of the advantages provided by the learning rate
scheduler (it is harder to actually schedule the size of steps through the learning rate
when the gradients have a high variability).
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Figure 4.19: Normalization before value clipping

Figure 4.20: Value clipping before normalization
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4.4.5 Hyper-parameters cross-validation

Several hyperparameters are optimized through a cross-validation scheme :

• The losses L1 and L2 are linearly combined to a loss

L = αL1 + βL2

I pose α = 1 and optimize β through a cross-validation scheme, it is the impor-
tance given to L2 with respect to L1;

• The architecture of the model : number of embeddings / LSTM layers, hidden
sizes of each ; We also tried altogether dropping either the embeddings layer or
the LSTM;

• The sharing or not of the ŷ head, a single neuron having as entry the hidden
size of the LSTM and a bias, and a single output, which is used to convert the
output vector of the LSTM at each time step to a scalar, the predicted survival
probability ŷk.

All these choices have been considered with respect to the total number of parameters
of the model : we must be very careful not to over-parametrize, thus inducing over-
fitting.
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Chapter 5

Pricing applications and scenarii

Measuring the impact of the dynamic evolution of insureds’ health features can be used
in different pricing schemes.

First of all, dynamic survival models allow actuaries to estimate the sensitivity of
a calculated premium to health scenarios. For instance, a possible simulation could
estimate the savings related to a person shifting from a high to a normal BMI.

Furthermore, dynamic survival modeling is a method useful for designing coverage with
a dynamic pricing. An insured with a healthy or unhealthy lifestyle would receive either
discounts or penalties. In this mindset, SCOR developed a Biological Age Model used
to price similar contracts.

5.1 Assumptions

As a reminder, the mortality models used in this pricing exercise have been trained
on the simulated survival dataset described in a previous section. The machine learn-
ing models produce estimations of the mortality rates at each timestep based on the
current age, gender, smoker status, BMI, systolic blood pressure and diastolic blood
pressure.

In this section, we are interested in pricing a temporary 10-year life insurance policy
with a $1, 000, 000 coverage. The insured is a non-smoker woman aged 45. At the
time she applies for the policy, her biometric features (BMI, systolic and diastolic
blood pressures) are those of the average woman in the test database with the same
characteristics:

• BMI ≈ 27.45

• BPSystolic ≈ 112.5

• BPDiastolic ≈ 76.5
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This hypothetical woman is slightly overweight but not obese (BMI ∈ [25, 30]), with
optimal systolic and diastolic blood pressures (see appendix 5.5) ; therefore, we can
consider that she is in an ideal health condition with respect to the parameters.

5.2 Models Training and Testing

The total 200,000 individuals in the generated database were randomly split as follows
into 3 subdatabases :

• 60% (120,000 individuals) in a train database ;

• 20% (40,000 individuals) in a validation database ;

• 20% (40,000 individuals) in a test database.

All classic machine learning models and my RNN-Surv implementation have been
trained on the train database, with improvements in learning evaluated at each step on
performance on the validation set. This is a safety measure to prevent the models from
overfitting the train data too much (learning "by heart" some behaviors). Finally, they
have been estimated for the pricing simulation on the test database, never seen before,
in order to measure the robustness of the inference that have been learned.

5.2.1 Machine Learning Models

The general setup for training machine learning models is a static framework : at each
time step t, for each input of the present vector of covariates xt, we predict a binary
target 0/1 indicating whether the individual survives at t + 1.

I will report the results for the following machine learning models from the SCOR
survival library :

• Gradient Boosting methods : LightGBM, XGBoost, CatBoost ;

• Poisson and Logistic Regression.

Generalized Linear Models, Generalized Additive Models and Random Forests perfor-
mances were too poor and were soon abandoned.

The importance attributed by each of these models to the different input covariates
are illustrated in figure 5.1. It is normal to have the age as the most important feature,
that is coherent with what we observe in the mortality tables (exponential increase in
the mortality rate with age). Having gender in second position is quite natural as well.
Interestingly enough, these 2 features are not explicitly taken into account in the risk
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Figure 5.1: Feature importance for the machine learning models
function generating hazard rates, but only implicitly as they influence the underlying
multiplier rate extracted from the INSEE mortality tables.

However, you can notice that BMI is deemed less important than systolic blood pressure
by most models. First, that is certainly not very signficant. Second, that is due to the
fact that these machine learning models are static and incapable to derive risk from
past evolution of the features : as past evolution of the BMI is an important risk driver
in my hazard rate generation, is is logical that with RNN-Surv I observe an inversed
and much more pronounced order. Finally, the low position of diastolic is due to the fact
that it doesn’t intrinsically add much more information than systolic, being correlated
at more than 97%.

5.2.2 RNN-Surv

Interpolation and Padding

The choice I made was to add an is_PAD feature as the last covariate, which is 1

if the time step is after the end date and 0 otherwise. Then, for the default padding
vector, I had to choose default values ; I made the arbitrary choice to set a vector of 0,
since various testing with other vectors didn’t show any significant difference in final
performance.

During the simulations, there was little to no difference between padding with a specific
padding vector (namely a vector of 0) or forward filling the last observed value. In
the case of forward filling the last observed value, one could drop one category for
categorical variables ; this made little difference as well, only reducing the size (number
of parameters) of the model.

However, what did make an important difference in the final loss values and in the
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quality of the survival predictions was the introduction of the is_PAD feature as the
last covariate. Since it was not mentioned in the original paper, I had supposed that
the masking of the losses would be sufficient for the optimizing process, but in the end
it appeared crucial to explicitly set the padding indicator.

Framework

As the matrix C caching uncomparable individuals for the loss L is of size n×n, with
n the number of individuals, memory issues mean that it is impossible to optimize all
the train database in one time. Therefore, we split it in 12 batches of size 10,000 each
which are shuffled between each of the 100 epochs so that it remains as representative
as possible.

An extensive hyperparameter optimization grid-search has lead to defining the following
setup for our model :

• No embeddings layer : this is a rather radical choice since that brings the model
back to a simple LSTM. However, as the primary function of an embedding layer
is to get a mapping to a lower dimensional space, one must wonder whether
that is pertinent with only 6 covariates + the padding feature, in total an input
dimension of only 7. It rather leads to an overparametrization of the problem.
The raw features are directly fed as input to the LSTM.

• A LSTM with 2 layers and a hidden size of 5 ;

• α and β in proportions of 10 to 1, for example α = 5, β = 0.5 ;

• a dropout rate of 10% ;

• a batch-size of 10,000 ;

• 100 epochs training with an initial learning rate of 10
−2, scheduled in 0.95

epoch

• sharing the output node of the LSTM to the survival probabilities estimates.

Using the conditional survival probability yt = P(T > t∣T ≥ t) at each time step
as target has yielded much better results on all metrics than using the hazard rate
ht = P(T = t∣T ≥ t), as was proposed in Deep Recurrent Survival Analysis (Ren et al,
2018).

For reproducibility purposes, it is essential to initialize all random generators’ seeds for
both the CPU and GPU, as they determine both the initial values of the model’s weights
and the batch order in which individuals from the train database will be sampled. For
quality optimization of the L loss, it is also essential to shuffle batches between each
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epoch, so that individuals are statistically likely to meet all the others at one point
and the comparison loss can be as representative as possible.

5.3 Models Evaluation

5.3.1 Scenario Formulation

It is interesting to mention here that, from a central health scenario with nearly con-
stant BMI and blood pressure, I derived an increasing BMI and a decreasing BMI
scenario following 2 methodologies :

• Adding a trend only to the BMI ;

• Adding a trend to the BMI, systolic and diastolic blood pressures.

You can remember from table 3.12 that the BMI was correlated at respectively 34%
and 28% with the systolic and diastolic blood pressures, and from the machine learning
models presentation that one central assumption was the independence of the covari-
ates, which is clearly not the case here.

In the end, RNN-Surv alone was able to provide updated mortality predictions for a
person with single BMI augmentation or decrease, all classic machine learning models
kept outputting the same predictions and weren’t able to take into account the change
in BMI trend, probably because of a confusion with the untouched blood pressure
signal. It could also be linked to the fact that they are in a static setup and have no
notion of the actual evolution, contrarily to RNN-Surv. However, when all 3 features
follow a similar evolution, machine learning models all produce interesting updated
mortality estimates.

5.3.2 Payments

For a life insurance of nominal 1,000,000, at each time step t ∈ [0, 9], if we set the
actualisation rate at IR = 2% the present value of the nominal is

PV =
1

(1 + IR)t+1
N

It gives us the following actualisation rates and present values of the nominal at each
time step :

t déflateur cash_pv

0 0.9804 980392
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1 0.9612 961169

2 0.9423 942322

3 0.9238 923845

4 0.9057 905731

5 0.8880 887971

6 0.8706 870560

7 0.8535 853490

8 0.8368 836755

9 0.8203 820348

As a reminder, the models output for each time step tk an estimate of the survival
probability at this time step ŷk = P(T > tk∣T > tk−1), ŷ0 = P(T > t0) (the conditional
probability doesn’t make sense at time step 0 since the individual is necessarily alive
at entry in the portfolio). Therefore, based on conditional probabilities, the probability
of death at timestep tk is

P(T = tk) = P(T = tk∣T > tk−1)P(T > tk−1) = [1 − P(T > tk∣T > tk−1)]P(T > tk−1)

It is easy to see iteratively with conditional probabilities that

P(T > t0) = ŷ0,

P(T > t1) = P(T > t1∣T > t0)P(T > t0) = ŷ1 × ŷ0,

P(T > t2) = P(T > t2∣T > t1)P(T > t1) = ŷ2 × ŷ1 × ŷ0,

P(T > ti) =
i

∏
j=0

ŷj

(5.1)

Therefore, the estimated premiums for each model survival estimates are, at each time
step k,

N

(1 + IR)t+1
(1 − ŷk)∏

j<k

ŷj

5.3.3 Central health scenario

The central health scenario is a scenario where the evolution of the BMI and systolic/-
diastolic blood pressures during the policy duration follows the average. The table 5.2
represents the central health scenario. Each of these biometric covariates slightly in-
creases as the person gets older over time ; this is very natural and due to the fact
that

1. The initial values of the parameters, as derived from the initial distribution, are
generally positively correlated with age ;
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Figure 5.2: Average BMI, systolic and diastolic blood pressures for a 45-
year-old non-smoker female over 10 years

2. For the 3 parameters, there are more individuals being generated with upward
trends than with stable or downward trends.

3. You can remember (figure 3.12) that we had, in the global database, the following
correlation rates :

BMI Systolic Diastolic

age 3.7% 34.7% 38.2%

All in all, this scenario will be considered as central since the evolution involved are
not of significant amplitude and rather related to age.

The mortality rates, as predicted at each time step (i.e. sequentially) by the different
machine learning models, are presented in figure 5.3.

Now, if we set the actualization rate at 2%, we obtain the annual premiums correspond-
ing to each model’s mortality estimations, as presented hereunder. You can notice they
can vary considerably depending on the estimation, and that they are consistently
underestimated ; in the end, RNN-Surv proves to be the best fit.

catboost lightgbm xgboost logistic poisson rnnsurv BE

1977 1508 1411 1457 1498 1667 1851

1964 1333 1382 1562 1605 1631 1871

1922 1411 1353 1676 1720 1784 1740

1916 1392 1351 1796 1841 1746 1660

2084 1735 1670 1926 1973 1709 2110

2129 1801 1749 2173 2212 1672 1919
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Figure 5.3: Mortality rates of a 45-year-old non-smoker female, central
2204 2045 1955 2413 2445 1722 2335

2435 2060 1912 2653 2680 2022 2611

2631 2363 2328 2893 2915 2554 3008

2967 2692 2631 3142 3159 3543 3406

5.4 Increasing BMI scenario

An increasing BMI scenario reflects a person gaining weight. This can be related to a
diet change, certain illnesses, stress, or other factors, as is reflected by the fact that
we increase the blood pressure simultaneously. An increasing BMI translates into an
increasing coronary heart disease, stroke and cardiovascular death.

To price a sensitivity, an actuary estimates that the BMI of the applicant is linearly
increasing with an annual 0.5 increment from the central scenario, while at the same
time the blood pressures increase by an annual 2 points. The corresponding evolution
is depicted in figure 5.4. You can notice that, from mild overweight and optimal blood
pressure, our insured moves to a type I obesity, grade I hypertension health condition.
This is obviously reflective of a degradation of her health condition ; we would expect
her mortality estimates to increase. Indeed we notice a sharp increase in mortality
rates.

The projected cash flows in this scenario are :

catboost lightgbm xgboost logistic poisson rnnsurv BE

1977 1508 1411 1457 1498 1667 1851
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Figure 5.4: Mortality rates of a 45-year-old non-smoker female, ascending
1997 1463 1408 1645 1687 1631 1871

2051 1985 1667 1858 1900 1878 1740

2084 2097 1836 2097 2137 1838 1660

2241 2066 2226 2367 2406 1798 2110

2334 2175 2088 2812 2835 1759 1919

2525 2695 2560 3285 3291 1894 2335

2966 3197 2756 3799 3786 2357 2611

3701 3953 5060 4355 4323 3128 3008

4814 4955 5070 4969 4914 4663 3406

5.5 Decreasing BMI scenario

Contrary to estimating an adversarial scenario for the applicant, an underwriter or a
marketing actuary could be interested to estimate how much savings the life insurance
company may cash in if the BMI of the insured decrease. Here, the scenario is a
decreasing line with annual increment of 0.5 from the central scenario for the BMI,
and of 2 points for the blood pressure. The insured falls from overweight to optimal
weight, which should be sightly beneficial, but she also falls in hypotension (diastolic).
As the model prefers stability, we should expect to see a mortality degradation. The
corresponding evolution is depicted in figure 5.5. Indeed we notice a sharp increase in
mortality rates.

The projected cash flows in this scenario are :
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Figure 5.5: Mortality rates of a 45-year-old non-smoker female, descending
catboost lightgbm xgboost logistic poisson rnnsurv BE

1977 1508 1411 1457 1498 1667 1851

1968 1514 1414 1483 1527 1631 1871

1926 1461 1385 1511 1557 1878 1740

1912 1342 1330 1538 1586 1838 1660

2052 1527 1613 1566 1617 1798 2110

2027 1487 1523 1679 1726 1759 1919

2099 1640 1703 1772 1816 1980 2335

2344 1626 1666 1851 1895 2441 2611

2614 1953 2026 1919 1963 3456 3008

3794 3844 3286 1981 2027 5303 3406

The result is very interesting. Indeed, you can notice that the expected cashflows fore-
cast by RNN-Surv are lower than in the increasing scenario for the first 5 years, and
then higher : this corresponds to attaining the optimal weight, then a degradation of
the blood pressure.

110



Conclusion

This actuarial thesis aimed to brainstorm on the possibilities of modelling time varying
health related covariates in life insurance. These new dynamic mortality models are
tools for actuaries to estimate premium variations sensitivities based on the future
evolution of the insured biometric profile.

A seriatim dataset was simulated to replicatea life insurance portfolio with realsitic
biometric profiles. Insured mortality rates and biometric covariates were evaluated over
26 years and on a annual basis. A censorship mechanism is included in the simulations to
create observations with partial information (no event observed) - reccurent in survival
data. The correlations, interactions and dynamics have been simplified in order to
enable large-scale simulation, although remaining realistic enough of a population. The
insured smoking status does not change over time.

The second objective was to examine the sensitivity of machine learning algorithms
adapted to model the mortality of dynamic biometric measures : BMI, systolic blood
pressure, diastolic blood pressure. These machine learning models are based on the as-
sumption of independence of health measurements between time steps. This hypothesis
is not relevant as the processus underlying the evolution health is time dependant. In
order to tackle this problem, a recurrent neural networks was studied and implemented
in Python. After an in-depth review of the existing adaptations of deep learning archi-
tectures for mortality risk assessment, this thesis presents a practical implementation
of RNN-Surv, a recurrent deep learning model aiming at predicting survival probabili-
ties.

Machine learning mortality models can predict the risk of evolving biometric profiles
that are very useful for actuaries for example when leading premium sensitivities of life
insurance covers. To tackle the issue of independence between time varying covariates,
the RNN-Surv’s sequential structure is a good approach. It demonstrated an ability to
model very different shapes of survival curves.

Certain work would be of interest to deepen this subject. The simulator could be
enhanced with the creation of a bayesian networks based on SCOR expertise and
litterature. Other time varying biometric features such as Gamma GT, albumine, LDL,
HDL, total cholesterol, and others may be added to the generator. Secondly, the RNN-
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Surv necessits further research in order to be fully functionnal. The training of the
algorithm is not complete as the average mortality is higher than expected in the
dataset. Finally, to confirm the real benefit of this model for mortality modeling, it
would be interesting to conduct this experiment on the IMRD database, a 19 million
UK patient database of sequential biomedical data, which will enable us to test the
performance of our GPU-optimized model on a real world big database.
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Data Sources

The following data tables have been used as a support for the initial database distri-
bution of features.

From Statistique Canada1, 2019 prevalence of obesity, hypertension and smokers among
the adolescent and adult population of Canada, by age group and gender, in % of the
total :

IMC obese Hypertension Fume

12-17 H 28.5 0.4 2.5

F 20.2 0.5 2.5

18-34 H 35.7 2.6 21.2

F 24.3 1.6 13.3

35-49 H 43.7 11.7 20.2

F 31.2 8.2 13.5

50-64 H 41.7 28.2 20.5

F 33.1 22.5 16.4

65+ H 42.9 42.1 10.0

F 35.5 44.8 8.4

From Université de Grenoble2, normal and abnormal systolic and diastolic blood pres-
sure range of values :

Systolic Diastolic

min max min max

Optimal 100 120 70 80

Normal 100 130 70 85

Normal High 130 140 85 90

Isolated Systolic Normal High 130 140 70 85

Grade 1 (light) 140 160 90 100

Grade 1 (light) limit AHT 140 150 90 95

Grade 2 (moderate) 160 180 100 110

Grade 3 (severe) 180 200 110 200
1https://www.statcan.gc.ca/
2http://www-sante.ujf-grenoble.fr
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Isolated systolic HT 140 200 70 90

Isolated systolic HT limit AHT 140 150 70 90

From INSEE3, 2016 gender ratios (number of males / number of females) by age in the French
population :

age_min age_max ratio

0 4 1.04

5 9 1.05

10 14 1.05

15 19 1.05

20 24 1.03

25 29 1.00

30 34 0.97

35 39 0.96

40 44 0.99

45 49 0.99

50 54 0.99

55 59 0.95

60 64 0.92

65 69 0.89

70 74 0.87

75 79 0.82

80 84 0.69

85 89 0.53

90 94 0.40

95 150 0.27

From INSEE4, 2016 mortality ratios per 10,000 people by age and gender in the French
population :

q_F q_M

age

0 29.04 35.36

1 5.63 6.21

2 2.15 2.39

3 1.33 1.78

4 1.07 1.39

5 0.89 1.18
3https://www.insee.fr/
4https://www.insee.fr/

114



6 0.81 1.08

7 0.74 0.94

8 0.68 0.84

9 0.65 0.79

10 0.66 0.79

11 0.68 0.81

12 0.70 0.86

13 0.79 1.04

14 0.94 1.33

15 1.13 1.71

16 1.26 2.20

17 1.41 2.98

18 1.66 3.93

19 1.92 4.82

20 2.13 5.46

21 2.13 5.87

22 2.14 6.13

23 2.16 6.39

24 2.20 6.61

25 2.31 6.96

26 2.35 7.14

27 2.50 7.37

28 2.66 7.56

29 2.93 7.76

30 3.09 8.01

31 3.28 8.27

32 3.43 8.58

33 3.70 9.10

34 3.89 9.54

35 4.25 10.04

36 4.80 10.54

37 5.45 11.34

38 6.03 12.49

39 6.58 13.62

40 7.25 14.78

41 7.91 16.10

42 8.67 17.47

43 9.92 19.69

44 11.23 21.54

45 12.50 23.61
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46 13.81 26.26

47 15.07 29.30

48 17.23 32.11

49 18.17 35.39

50 19.92 38.86

51 21.98 42.35

52 23.44 46.35

53 25.31 51.25

54 27.69 56.99

55 29.63 63.98

56 32.33 69.35

57 34.89 76.68

58 37.42 83.41

59 40.41 88.57

60 42.32 97.89

61 45.60 103.15

62 47.81 110.24

63 51.66 118.14

64 54.01 124.44

65 58.96 131.91

66 61.72 139.02

67 65.89 147.12

68 71.28 158.98

69 77.48 169.28

70 85.96 182.98

71 92.10 195.22

72 102.70 210.19

73 113.47 229.79

74 122.55 246.10

75 137.80 269.25

76 155.27 295.43

77 172.74 328.35

78 192.94 361.18

79 220.11 408.88

80 254.96 453.60

81 294.16 510.26

82 336.77 577.17

83 389.41 646.51

84 451.56 732.59

85 525.00 826.94
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86 608.84 936.10

87 706.88 1055.71

88 806.25 1195.32

89 930.69 1331.75

90 1067.83 1481.43

91 1221.44 1655.42

92 1390.13 1838.66

93 1572.35 2031.26

94 1774.97 2252.39

95 1975.88 2474.99

96 2208.76 2669.96

97 2441.61 2883.67

98 2681.44 3139.56

99 2889.20 3384.39

100 3121.83 3447.32

101 3429.02 3593.66

102 3620.43 3820.43

103 3856.58 4056.58

104 3980.77 4180.77
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Logrank statistics

The logrank test is the most widely used test to compare survival curves. It is a non-
parametric test. This test can be generalized for any number of groups but for the
survival tree purpose only the two groups version is used.

In this test, we state the null hypothesis : H0 ∶ SA(t) = SB(t) ∀t

Within each group we compute the number of expected deaths for each observed time
i:

eAi =
nAidi
ni

and eBi =
nBidi
ni

We finally aggregate for each time to obtain the total number of expected death E. =
∑i e.i and the observed number of death O. = ∑i d.i.

Group A Group B Total
Death dAi dBi di

Survivorship nAi − dAi nBi − dBi ni − di
Total nAi nBi ni

Table 1: Notation used at time i

Finally the logrank statistics is given by X2
=

(OA−EA)2
EA

+ (OB−EB )2
EB

Under H0 this statistics follows a chi-square distribution with one degree of freedom,
we can then compute the p-value.

As the whole survival theory, the validity of this test relies on the independence as-
sumption between the observed event and the censoring.

The main limit is the difficulty to reveal the difference of mortality between two groups
when their survival curve cross. The power of the test is indeed maximum for propor-
tional curves.
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