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Résumé

La vision de la mortalité future est cruciale pour les compagnies d’assurance-vie.
La mortalité prédite est utilisée à la fois pour la tarification - impact direct sur la
profitabilité, et pour la gestion des risques - employée pour définir la solvabilité des
entreprises.

Les compagnies d’assurance utilisent des projections de mortalité future pour estimer
le coût probable des risques liés à la durée de vie humaine. Les données de mortalité
toutes causes sont souvent utilisées par les actuaires pour établir les hypothèses de
mortalité. En revanche, l’utilisation de la modélisation de la mortalité par cause
permet de construire des scénarios hypothetiques pour produire une analyse de type
“what-if”, qui sont constamment demandées à la fois par les régulateurs et les parties
prennantes internes.

Cette thèse introduit la modélisation de la mortalité par cause de décès dans le cadre
des risques concurrents et montre comment les hypothèses sur la structure de dépen-
dance entre les causes affectent les projections de mortalité futures. Nous évaluons les
impacts sur l’espérance de vie dans le scénario central et dans des scénarios hypothé-
tiques sur la maladie d’Alzheimer et de la démence. Ces scénarios hypothétiques
sont utilisés pour illustrer l’impact probable de la diversification sur les activités de
mortalité et de longévité.

Mots clés: Mortalité, Longevité, Cause de décès, Risques concurrents, Copule archimé-
dienne, Analyse de scénario.
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Abstract

Mortality prediction is crucial for Life insurance companies as the future mortality
prediction is used for both policy pricing - direct impact on profitability, and risk
management - to set business acceptance capacity.

Insurance companies use future mortality projections to estimate probable cost of
risks related to human lifespan. The all-cause mortality data is often used by the ac-
tuaries to set mortality assumptions. Otherwise, using cause-specific mortality mod-
elling permits construction of cause-specific scenarios to produce a “what-if” type-of
analysis, which are constantly requested by both regulators and internal stakeholders
like risk management.

This thesis introduces cause-of-death mortality modelling within competing risk
framework and shows how assumptions on cause dependency structure affect fu-
ture mortality projections. We assess impacts on life expectancy in central scenario
and in hypothetical scenarios on Alzheimer’s and dementia cause. These hypotheti-
cal scenarios are used to illustrate probable diversification impact on mortality and
longevity businesses.

Keywords: Mortality, Longevity, Cause of death, Competing risks, Archimedian
copula, Scenario analysis.
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Note de synthèse

Contexte

Les compagnies d’assurance sont tenues de produire des scénarios de type “what-if”
à la fois par les régulateurs et les parties prenantes internes, comme les équipes de
management du risque. À l’aide de scénarios de stress test, les régulateurs cherchent
à valider le modèle interne et à identifier les situations de crise probables qui men-
aceraient la viabilité de l’entreprise. La direction de la compagnie est également
intéressée par l’analyse des scénarios probables qui permet d’évaluer la résilience aux
chocs, d’approuver les décisions sur l’appétit au risque et d’évaluer l’impact de la
diversification du portefeuille.

Construire des scénarios de type “what-if” pour les risques de mortalité et de longévité
se traduit par un besoin de créer des scénarios hypothétiques sur une ou plusieurs
causes de décès. Cela permet d’élaborer une histoire autour d’un modèle mathéma-
tique et d’interpréter les résultats.

Par conséquent, le scénario sur une ou plusieurs causes de décès nécessite une mod-
élisation de la mortalité à un niveau granulaire spécifique. Comme la mort n’est pas
répétitive et est associée à une cause unique, toutes les causes se disputent la vie
d’une personne. La modélisation de la mortalité par cause est soumise à un cadre de
risques concurrents, en ce sens que la probabilité de chaque événement concurrent
est en quelque sorte régulée par les autres événements concurrents.

Le premier chapitre de ce mémoire présente le contexte et les motivations de l’étude.
Dans un deuxième temps, nous donnons un bref aperçu de l’historique et intro-
duisons les concepts utilisés dans la modélisation de la mortalité. Différentes manières
d’aborder la projection de la mortalité sont présentées dans le deuxième chapitre,
en commençant par les modèles de mortalité toutes causes, puis en affinant le con-
cept de modélisation de la mortalité par cause de décès plus granulaire. Le troisième
chapitre présente les données utilisées. Les approches de modélisation de la mortalité
par cause sont ensuite abordées, en supposant d’abord l’indépendance, puis différents
niveaux de dépendance entre les causes à l’aide des copules Archimédiennes de survie.
Le dernier chapitre présente des scénarios footprint sur la maladie d’Alzheimer et de
la démence. Ces scénarios permettent d’illustrer un éventail de conclusions sur la
diversification entre les portefeuilles de mortalité et de longévité, en s’appuyant sur
la structure de dépendance supposée entre les causes.

Nous utilisons les données de la mortalité masculine U.S. par cause de décès et par
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niveau de scolarité atteint. En retenant que les niveaux d’éducation atteint les plus
élevés (équivalent à bac+3 et supérieur), nous proposons un proxy de la population
assurée pour l’application.

Cadre d’indépendance

Lors de la modélisation de la mortalité par cause de décès, nous avons besoin
d’introduire les notions d’intensité brute et nette de mortalité. Alors que la mor-
talité brute est directement obtenue à partir du nombre de décès et des données
d’exposition, la mortalité nette estime la probabilité de mourir dans le monde hy-
pothétique où vous ne pouvez pas mourir de causes autres que la cause d’intérêt. Il
s’agit d’une construction théorique et selon l’hypothèse sur la structure de dépen-
dance entre les causes, la relation entre la mortalité nette et brute sera différente.

La première approche de modélisation par cause presentée suppose l’indépendance
entre les causes de décès, ce qui signifie que les intensités de mortalité brute et nette
sont identiques. Chaque cause de décès i est modélisée séparément par le modèle de
mortalité Lee and Carter (1992) classique:

log(µx,t,i) = αx,i + βx,iκt,i + ϵx,t,i, (1)

ou αx,i est une mortalité moyenne de cause i à l’âge x, κt,i décrit l’évolution globale
de la mortalité de cause i dans le temps, βx,i représente la sensibilité à la dynamique
κt,i par âge et ϵx,t,i décrit le terme d’erreur. Les projections des intensités de mortalité
pour la cause i sont obtenues en extrapolant la tendance de mortalité κt,i avec marche
aléatoire avec drift comme processus stochastique :

κt+1,i = κt,i + δi + ηt,i, (2)

ou δi est un parametre de dérive pour la cause i et ηt,i ∼ N(0, σ2).

L’approche supposant une indépendance entre les causes prévoit une stagnation de
la mortalité toutes causes à long terme pour l’âge de 55 ans et amelioration de la
mortalité sur toute la période de projection pour l’âge de 75 ans, voir figures 1 et 2.

Cadre de dépendance basé sur la copule

Le cadre de la copule archimédienne est utilisé pour introduire une structure de
dépendance entre les causes de décès, une approche proposée par Li and Lu (2019).
En spécifiant la copule de survie S comme copule de survie archimédienne, Li and Lu
(2019) a montré que les intensités nettes par cause, par le biais de fonctions de survie
nettes, peuvent être estimées de manière unique à partir des données en utilisant des
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Figure 1: Mortalité par cause Figure 2: Mortalité toutes causes

intensités brutes et la copule :

Si(t) = ψ

[
−
∫ t

0

exp (−
∫ s
0

∑m
j=1 µj(u)du)

ψ′ ◦ ψ−1 ◦ exp (−
∫ s
0

∑m
j=1 µj(u)du)

µi(s)ds

]
, ∀i = 1, . . . ,m. (3)

On utilise la copule de Clayton avec générateur ψ(t) = (1 + t)−1/θ et on choisie
le paramètre de dependence θ = 1 et θ = 4. Les valeurs du paramètre θ définissent
l’intensité de la dépendance, et plus la valeur θ est élevée, plus la dépendance assumée
entre les causes est forte.

Nous observons que les projections de mortalité par cause varient en fonction de la
dépendance entre les causes supposées, voir les figures 1, 3 et 4. La mortalité toutes
causes confondues qui en résulte diffère également: l’indépendance entraîne une stag-
nation des taux de mortalité dans la seconde moitié de la période de projection pour
l’âge de 55 ans, tandis que θ = 1 et θ = 4 fournissent des projections de mortalité
décroissantes. Inversement, la baisse des taux de mortalité à 75 ans est projetée plus
élevée sous l’hypothèse d’indépendance, voir les figures 2, 5 et 6.

Les projections de mortalité obtenues donnent une espérance de vie plus faible que
dans le cadre de l’indépendance, et le ralentissement de l’amélioration de la mortalité
est plus fort pour une valeur θ plus élevée. Le Tableau 1 présente les espérances de
vie périodiques résiduelles projetées à 55 et 75 ans sous différentes hypothèses de
dépendance. Nous observons des variations importantes dans les gains projetés, pour
les âges de 55 et 75 ans à la fin de la période de projection, la différence est de plus
de 3 ans entre les hypothèses d’indépendance et de forte dépendance.
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Figure 3: Mortalité nette, θ = 1 Figure 4: Mortalité nette, θ = 4

Figure 5: Mortalité globale, θ = 1 Figure 6: Mortalité globale, θ = 4
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Esperance de vie residuelle (années)
Âge 55 Année 2001 Année 2019 Année 2040 Année 2060
θ = 0 26 29 30.9 32.1
θ = 1 26 29 30.1 30.7
θ = 4 26 29 29.3 29

Âge 75 Année 2001 Année 2019 Année 2040 Année 2060
θ = 0 10.1 11.8 13 13.9
θ = 1 10.1 11.8 12.3 12.4
θ = 4 10.1 11.8 11.6 10.8

Table 1: Espérances de vie périodiques résiduelles

Les scenarios Footprint

La modélisation de la mortalité par cause de décès permet d’intégrer des scénarios
par cause sur une ou plusieurs causes d’intérêt. Nous proposons deux scénarios sur
la mortalité future de la maladie d’Alzheimer et la démence et nous évaluons les
impacts sur les model points représentant les portefeuilles de la mortalité et de la
longévité et leur diversification. Les deux scénarios proposés résultent des progrès
combinés des mesures de prévention et des innovations en matière de détection et de
traitement des risques.

Dans le premier scénario, la mortalité due à la maladie d’Alzheimer et à la démence
est réduite de 66% par rapport à la projection du scénario central sur les 15 prochaines
années. Après cet horizon d’amélioration de 15 ans, la probabilité spécifique à l’âge
de décès dû à la maladie d’Alzheimer et à la démence est supposé rester à 33% de
sa projection pré-scénario.

Le deuxième scénario est plus extrême à la fois sur le délai aprés la percée médicale
et sur l’impact significatif du scénario proposé. Nous supposons une élimination de
la mortalité et de la perte d’autonomie causés par les maladies d’Alzheimer et de
démence dans les 5 prochaines années de la projection. Les deux scénarios sont des
vues très positives des résultats futurs possibles en ce qui concerne l’impact sur la
santé, particulierement pou le second scenario.

Les figures suivantes illustrent le Scénario 1 sur la mortalité par cause et globale.

Figures 7, 8 and 9 montrent comment la diminution de la mortalité due à la maladie
d’Alzheimer et à la démence n’a pas d’impact sur les autres causes sous l’hypothèse
d’indépendance. En revanche, la prise en compte de la dépendance entre les causes
entraîne un transfert des décès vers d’autres causes, et le transfert est plus important
avec un paramètre θ plus élevé.

Les vies “sauvées” des décès dus à la maladie d’Alzheimer et à la démence transférées
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Figure 7: Scenario 1, independence Figure 8: Scenario 1, θ = 1

Figure 9: Scenario 1, θ = 4
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à d’autres causes entraînent des variations importantes des gains d’espérance de vie
pour différentes hypothèses de dépendance. Le Tableau 2 décrit les gains d’espérance
de vie suite à une réduction de 66 % de la mortalité due à la maladie d’Alzheimer et à
la démence et nous observons des variations importantes dans les gains du scénario,
en particulier entre les cas avec des causes indépendantes et en supposant une forte
dépendance (θ = 4).

Residual life expectancy
Âge Dependence Cas Année

2019
Année
2040

Année
2060

55 θ = 0 Scénario central 29 30.9 32.1
Scénario 1 29 31.4 32.7
∆ (mois) - 5.9 7.3

θ = 1 Scénario central 29 30.1 30.7
Scénario 1 29 30.6 31.2
∆ (mois) - 5 6.4

θ = 4 Scénario central 29 29.3 29
Scénario 1 29 29.5 29.1
∆ (mois) - 2.2 1.7

75 θ = 0 Scénario central 11.8 13 13.9
Scénario 1 11.8 13.5 14.5
∆ (mois) - 5.7 7

θ = 1 Scénario central 11.8 12.3 12.5
Scénario 1 11.8 12.7 13
∆ (mois) - 4.7 6

θ = 4 Central scenario 11.8 11.6 10.9
Scénario 1 11.8 11.7 11
∆ (mois) - 1.7 1.1

Table 2: Espérances de vie périodiques résiduelles, Scénario 1

Le deuxième scénario est plus extrême et par conséquent les gains d’espérance de
vie sont plus importants. Cependant la conclusion générale est la même avec des
gains d’espérance de vie offerts par le scénario avec indépendance les plus elevés et
les gains les plus modestes - pour θ = 4.

Pour illustrer comment les résultats précédents pourraient avoir un impact sur les
résultats d’une compagnie d’assurance, nous utilisons un model point représentatif
pour chaque portefeuille de mortalité et de longévité avec la valeur actuelle des
sinistres égales dans le scénario central et nous évaluons les gains et les pertes pour
le Scénario 1 et le Scénario 2, voir Tableau 3.

L’hypothèse de l’indépendance entre les causes entraîne la plus grande variation
pour le montant de sinistres pour les portefeuilles de Mortalité et Longévité, ce qui
était à prévoir car les gains d’espérance de vie étaient les plus élevés dans le cadre de
l’indépendance, tandis que l’hypothèse d’une forte dépendance entre les causes donne
lieu à des fluctuations modérées. Les deux scénarios sous l’hypothèse d’indépendance
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produisent une baisse du montant total des sinistres, θ = 1 donne lieu à une légère
augmentation des sinistres pour le Scénario 1 et à une baisse dans le Scénario 2, et
enfin, dépendance élevée génère des montants totaux de sinistres plus élevés pour les
deux scénarios.

Causes indépendantes (θ = 0)
Ligne de business Scénario central ∆ Scénario 1 ∆ Scénario 2
(1) Mortalité (sinistres) 2000 -53 -83
(2) Longevité (sinistres) 2000 +33 +82
Total (1)-(2) 0 -20 -1

Copule de Clayton, θ = 1

Ligne de business Scénario central ∆ Scénario 1 ∆ Scénario 2
(1) Mortalité (sinistres) 2000 -37 -57
(2) Longevité (sinistres) 2000 +28 +68
Total (1)-(2) 0 -9 +9

Copule de Clayton, θ = 4

Ligne de business Scénario central ∆ Scénario 1 ∆ Scénario 2
(1) Mortalité (sinistres) 2000 -10 -14
(2) Longevité (sinistres) 2000 +14 +30
Total (1)-(2) 0 +4 +16

Table 3: Impact sur la diversification pour différentes valeurs θ

Nous observons que le fait de ne pas prendre en compte la structure de dépendance
entre les causes pour modéliser les scénariospourraient générer des gains hypothé-
tiques. D’autre part, travail dans un cadre de risques concurrents entraînerait des
gains plus modérés de la diversification entre la mortalité et la longévité. En sup-
posant que les causes sont indépendantes, les deux scénarios entraînent des sinistres
inférieurs à ceux du scénario central, en particulier pour le Scénario 1. En passant
au cas de faible dépendance (θ = 1), la réduction des sinistres totaux est deux fois
plus petit et nous observons une augmentation des sinistres pour le Scénario 2 (+9
vs -1). L’hypothèse d’une forte dépendance entre les causes a un impact encore plus
fort et pour les deux scénarios on observe une augmentation des sinistres.

Les impacts financiers des scénarios sont sensiblement différents selon l’hypothèse
de dépendance utilisée lors de la modélisation de la mortalité par cause. La variété
des conclusions concernant les effets de diversification et la résilience des entreprises
illustre l’importance de travailler dans un cadre de risques concurrents.
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Executive summary

Context

Insurance companies are required to produce “what-if” type of scenarios by both
regulators and internal stakeholders. Using stress test scenarios, regulators seek to
validate internal model and to identify probable crisis situations that would threaten
viability of the company. Senior management is also particularly interested in proba-
ble scenario analysis which permits assessing business resilience to shocks, supporting
business acceptance and risk appetite decisions and evaluating portfolio diversifica-
tion impact.

Building “what-if” type of scenarios for Mortality and Longevity risks translates into
a need to create hypothetical scenarios on one on several causes of death. This allows
building a story around mathematical model and interpret the results.

Consequently, scenario on one or several causes of death require mortality modelling
at a granular cause-specific level. As death is not repetitive and is associated to a
single cause, all causes compete with one another for the life of a person. Cause-
specific mortality modelling is subject to competing risk framework, in a sense that
probability of each competing event is somehow regulated by the other competing
events.

This thesis first gives a global overview of mortality modelling history and existing
methods. Secondly, we propose cause-specific mortality modelling approach by as-
suming independence between causes which is developed in the second chapter. In
the following, we refine the method by taking into account dependency structure
between causes within Archimedian copula framework. We assess impact of different
approaches on life expectancy in central scenario and also introduce specific scenarios
on Alzheimer’s and dementia cause that are discussed in Chapter 4. These scenar-
ios permit illustrating range of conclusions on diversification between mortality and
longevity portfolios one might end up with, built on assumed dependency structure
between causes of death.

We use U.S. male mortality data by cause of death and by educational attainment
level. By retaining only most-educated (Bachelors and Graduates) we propose an
insured-population proxy for application.

12



Independence framework

When modelling mortality by cause of death, one must introduce notions of crude and
net mortality intensity. While crude mortality is directly obtained from death count
and exposure data, net mortality estimates probability of dying in the hypothetical
world where you cannot die of causes other than the cause of interest. This is a
theoretical construct and depending on hypothesis on cause dependency structure,
relation between net and crude mortality will be different.

The first introduced cause-specific modelling approach assumes independence be-
tween causes of death, meaning that crude and net mortality intensities are equal.
Each cause of death i is modelled separately by classical Lee and Carter (1992)
mortality model:

log(µx,t,i) = αx,i + βx,iκt,i + ϵx,t,i, (4)

where αx,i is some average cause i mortality at age x, κt,i describes overall cause
i mortality evolution through time, βx,i represents sensitivity to κt,i dynamics by
age and ϵx,t,i describes the error term. Mortality intensity projections for cause i are
obtained by extrapolating mortality trend κt,i using Random Walk with Drift as a
stochastic process:

κt+1,i = κt,i + δi + ηt,i, (5)

where δi is the drift parameter for cause i and ηt,i ∼ N(0, σ2).

Figure 10: Cause-specific mortality Figure 11: Aggregate mortality

Figures 10 and 11 show projected mortality stagnating in long-term for age 55 and
decline in mortality rates over whole projection period for age 75.
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Copula-based dependency framework

Archimedian copula framework is used to introduce dependency structure between
causes of death, an approached proposed by Li and Lu (2019). By specifying the
survivor copula S as Archimedian survivor copula, Li and Lu (2019) showed that
the net cause-specific intensities, through net survival functions, can be uniquely
estimated from the data by using crude-specific intensities and the copula:

Si(t) = ψ

[
−
∫ t

0

exp (−
∫ s
0

∑m
j=1 µj(u)du)

ψ′ ◦ ψ−1 ◦ exp (−
∫ s
0

∑m
j=1 µj(u)du)

µi(s)ds

]
, ∀i = 1, . . . ,m. (6)

We use Clayton’s copula with generator function ψ(t) = (1 + t)−1/θ and choose
dependency parameters θ = 1 and θ = 4. Parameter θ values captures dependency
strength, and the greater the θ value, the stronger dependence is implied between
causes.

Figure 12: Net mortality, θ = 1 Figure 13: Net mortality, θ = 4

We observe that cause-specific mortality projections vary depending on the depen-
dency between causes assumed, see Figures 10, 12 and 13. The resulting all-cause
mortality also differs - independence yields mortality rate stagnation in the second
half of the projection period for age 55, while both θ = 1 and θ = 4 provides de-
creasing mortality projections. Conversely, decline in mortality rates for age 75 is
projected higher under independence assumption, see Figures 11, 14 and 15.

The obtained mortality projections yield lower life expectancy than under the inde-
pendence framework as we allow for transfer between causes, and slowdown in mor-
tality improvements is stronger for higher θ value. Table 4 depicts residuals periodic
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Figure 14: Aggregate mortality,
θ = 1

Figure 15: Aggregate mortality,
θ = 4

life expectancy projected at ages 55 and 75 under different dependence assumptions.
We observe important variations in projected gains in life expectancy, for both ages
55 and 75. By the end of projection period the difference is more than 3 years between
independence and strong dependence assumptions.

Residual life expectancy (years)
Age 55 Year 2001 Year 2019 Year 2040 Year 2060
θ = 0 26 29 30.9 32.1
θ = 1 26 29 30.1 30.7
θ = 4 26 29 29.3 29

Age 75 Year 2001 Year 2019 Year 2040 Year 2060
θ = 0 10.1 11.8 13 13.9
θ = 1 10.1 11.8 12.3 12.4
θ = 4 10.1 11.8 11.6 10.8

Table 4: Residual periodic life expectancy

Footprint scenarios

Modelling mortality by cause of death permits integrating cause-specific scenarios
on one or several causes of interest. We propose two scenarios on Alzheimer’s and
dementia cause future mortality and we assess impacts on model points representing
mortality and longevity business lines and their diversification. The two proposed
scenarios are results of combined progress in prevention measures and innovations in
risk detection and treatments.
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In the first scenario, mortality due to Alzheimer’s and dementia is reduced by 66% of
the central scenario projection over the next 15 years. After this 15-year horizon of
improvement, the age specific probability of death due to Alzheimer’s and dementia
diseases is assumed to remain at 33% of its pre-scenario projection.

The second scenario is more extreme in both short timeline for the medical break-
through to be put in place and the significant impact the scenario proposed. We
assume an elimination of mortality and loss of autonomy from Alzheimer’s and de-
mentia diseases within the next 5 years of the projection.

Both scenarios are very positive views of possible future outcome with respect to
health impact and the second one particularly so.

Figure 16: Scenario 1, independence Figure 17: Scenario 1, θ = 1

Figures 16, 17 and 18 illustrate Scenario 1 on cause-specific and aggregate mortality.
We observe how Alzheimer’s and dementia mortality rate decrease has no impact on
other causes under the independence assumption, while accounting for dependence
between causes results in transfer of deaths to other causes, and the transfer is more
important with higher parameter θ value.

The lives “saved” from dying due to Alzheimer’s and dementia cause being transferred
to other causes result in important variations in life expectancy gains for different
dependency hypotheses. Table 5 depicts gains in life expectancy due to 66% reduction
in Alzheimer’s and dementia mortality and we observe important variations in the
scenario gains, particularly between cases with independent causes and assuming
strong dependency (θ = 4).

The second scenario is more extreme and consequently gains in life expectancy are
more important, but the overall conclusion is the same with most gains in life ex-
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Figure 18: Scenario 1, θ = 4

Residual life expectancy
Age Dependency Case Year 2019 Year 2040 Year 2060
55 θ = 0 Central scenario 29 30.9 32.1

Scenario 1 29 31.4 32.7
∆ (months) - 5.9 7.3

θ = 1 Central scenario 29 30.1 30.7
Scenario 1 29 30.6 31.2
∆ (months) - 5 6.4

θ = 4 Central scenario 29 29.3 29
Scenario 1 29 29.5 29.1
∆ (months) - 2.2 1.7

75 θ = 0 Central scenario 11.8 13 13.9
Scenario 1 11.8 13.5 14.5
∆ (months) - 5.7 7

θ = 1 Central scenario 11.8 12.3 12.5
Scenario 1 11.8 12.7 13
∆ (months) - 4.7 6

θ = 4 Central scenario 11.8 11.6 10.9
Scenario 1 11.8 11.7 11
∆ (months) - 1.7 1.1

Table 5: Scenario 1 residual periodic life expectancy

pectancy offered by scenario with independence and least gains by θ = 4.

To illustrate how the previous results could impact insurance company’s business, we
use one representative model point for each Mortality and Longevity portfolios with
equal PV claims in central scenario and assess gains and losses for both Scenario 1
and Scenario 2, see Table 6.
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Assuming independence between causes results in biggest variation of claims for
Mortality and Longevity business lines, which was to be expected as the life ex-
pectancy gains were the highest under the independence framework, while assuming
high dependency between causes yields in moderate fluctuations. Both scenarios un-
der independence assumption produce drop in total claims, θ = 1 yields to small
increase in claims for Scenario 1 and drop in Scenario 2, and lastly, considering high
dependency generates higher total claim amounts for both of the scenarios.

Independent causes
Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -53 -83
(2) Longevity claims 2000 +33 +82
Total (1)-(2) 0 -20 -1

Clayton’s copula, θ = 1

Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -37 -57
(2) Longevity claims 2000 +28 +68
Total (1)-(2) 0 -9 +9

Clayton’s copula, θ = 4

Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -10 -14
(2) Longevity claims 2000 +14 +30
Total (1)-(2) 0 +4 +16

Table 6: Impact on diversification for different θ values

We observe how not taking into account dependency structure between causes when
modelling scenarios could yield in hypothetical gains. On the other hand, working in
competing risk framework would result in more moderate gains from diversification
from mortality and longevity business lines. Assuming causes being independent both
scenarios results in lower claims than in central scenario, showing high diversification
between Mortality and Longevity business lines, especially for Scenario 1. Moving
to low dependency case (θ = 1), the reduction in total claims is twice smaller and
we observe and increase in claims for Scenario 2 instead of small gains (+9 vs -1).
Hypothesis of strong dependency between causes has even stronger impact and for
both scenarios where we observe increase in claims.

Financial scenario impacts are notably different depending on the dependency as-
sumption used when modelling mortality at granular cause-specific level. Conclusion
variety concerning diversification effects and business resilience illustrates importance
of working under competing risk framework.
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Introduction

Mortality prediction is crucial for Life insurance companies as the predicted future
mortality is used for both policy pricing - direct impact on profitability, and risk
management - used to set business acceptance capacity.

Mortality and longevity are directly opposite risks. Mortality risk refers to financial
burden that an insurance company can encounter if many of their life insurance
policy holders would die earlier than expected. On the other hand, longevity risk
corresponds to financial difficulty the company would face due to unexpected decrease
in mortality, resulting in annuity payments for longer period than expected.

Insurance companies use future mortality projections to estimate probable cost of
these risks related to human lifespan. Currently most of the life insurers set future
mortality assumptions by modelling all-cause mortality . This approach can be trans-
formed by approaching mortality in more granular - cause-specific level that is put
in place in this thesis.

Advantage of using cause-specific mortality modelling is adopting the framework
to derive cause-specific scenarios on one on several causes of interest to produce a
“what-if” type-of analysis for future mortality development. Insurance companies are
requested to deliver this type of scenarios by both regulators and internal stakehold-
ers. Regulators demand stress test scenarios to validate internal model and to identify
probable crisis situations that would threaten the viability of the insurance company.
Senior management is also particularly interested in probable scenario analysis which
permits to assess business resilience to shocks, support business acceptance and risk
appetite decisions and evaluate portfolio diversification impact.

The first chapter of this thesis presents background and motivation for the study. Sec-
ondly, we provide a brief overview on the history and introduce concepts used in the
mortality modelling. Different manners to approach mortality projecting are intro-
duced in the second chapter, starting by all-cause mortality models and then moving
to a more granular cause-specific mortality modelling concept. The third chapter
presents the data used. Afterwards, cause-specific mortality modelling approaches
are illustrated, first assuming independence and then different levels of dependence
between causes using Archimedian survival copulas. The final chapter introduces
footprint scenarios on Alzheimer’s and dementia causes to perform a “what-if” anal-
ysis on longevity and mortality business blocks and to assess diversification impact
between the two business lines, revealing important variations in results for different
dependency positions.
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Methods are applied on U.S. insured male population proxy data. The outcome could
be different using different country data or observation period.

SCOR uses mortality modelling by cause of death approach developed in this thesis
to derive adverse footprint scenarios for both internal model validation and in the
ORSA process to test the resilience of the current and expected future solvency
position.
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Chapter 1

Context of the study

This chapter presents background and motivation for this study. The suggested con-
text will provide useful grounds for the modelling approach proposed by this thesis.

1.1 Reinsurance

Reinsurance is often simplistically referred to as insurance for the insurance compa-
nies. It is in fact a contract between an insurer and a reinsurer. Under this contract,
an insurer - the cedent - transfers some of its risk to a reinsurance company with the
latter assuming the agreed part of the insurance contracts issued by the insurance
company. Reinsurance is essential tool used by the insurance companies to manage
risks and the amount of capital they must hold to support those risks. Insurers may
use reinsurance to achieve an optimal targeted risk profile. Reinsurance company
might judge that the total risk ceded by insurance company surpasses its capacity,
and in this case the reinsurance could further share the risk of the cedent with other
reinsurance companies through retrocession.

We can discern two types of reinsurance: proportional (quota-share) and non propor-
tional (excess-of-loss). In a proportional reinsurance treaties the reinsurer and the
cedent company share both the premium from the policyholder and the potential
losses. Consequently, they are mainly used to cover risks that occur frequently. In
a non-proportional agreement, the insurance company retains a certain amount of
liability for losses (known as the ceding company’s retention) and pays a fee to the
reinsurer for coverage above that limit amount, generally subject to a fixed upper
limit. Non-proportional agreements may apply to individual policies, to an event such
as a hurricane that affects many policyholders or to the insurer’s aggregate losses
above a certain amount, per year or per policy.

1.2 SCOR

SCOR, a leading global Tier 1 reinsurer, offers its clients a diversified and innovative
range of reinsurance and insurance solutions and services to control and manage risk.
Applying “The Art & Science of Risk”, SCOR uses its industry-recognized expertise
and cutting-edge financial solutions to serve its clients and contribute to the wel-
fare and resilience of society. SCOR provides its clients with value-added solutions
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thanks to an underwriting policy based on profitability, effective risk management
and cautious investment. In terms of financial strength, independent rating agencies
place SCOR among the best-ranked reinsurance companies in the world (A+ rat-
ing from S&P and Fitch, Aa3 from Moody’s and A+ from AM Best). The Group’s
development model is driven by three Business Units, which provide a broad range
of innovative reinsurance solutions: Property & Casualty, Life & Health and Invest-
ments.

Property & Casualty’s broad coverage of physical, environmental and financial risks
includes:

1. damage to physical assets caused by fire, natural catastrophes and other perils,
as well as inherent defects in construction

2. customized risk transfer solutions for crops, livestock, forest, greenhouse and
aquaculture resources

3. credit, surety and political risks, with more than 40 years’ experience to draw
on.

Life & Health safeguards human, social and relationship capital. With our unique
expertise in biometric and health-related risks, we offer a variety of health solutions
for:

1. critical illnesses such as cancer, heart attacks and stroke

2. long-term care required by conditions such as Alzheimer’s disease

3. longevity risks, which are important to the security of pension systems.

Investments, together with SCOR Investment Partners – its asset management com-
pany – contributes to economic growth by helping to increase many forms of capital.

1.3 Risks related to human life

This section is inspired by the doctoral thesis by Piveteau (2021).

There are numerous risks related to the duration of human life: longevity risk, mor-
tality risk, healthcare and long term care risks and demand of insuring those risks
is at all-time high. Indeed, the Covid-19 pandemics has emphasized the need for
mortality protection, rising health expenditure weight over government budgets and
public pension replacement rates are constantly declining.

Longevity risk refers to the possibility that life expectancy and actual survival rates
will exceed expectations or pricing assumptions and will result in financial losses
due higher-than-expected cashflows required by the pension funds. Inverse from the
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longevity risk, mortality risk represents financial trouble that a household meets
upon premature death of one of its providing members and the insurance company
faces risk that too many life insurance policy holders will die sooner than expected.

Healthcare spending and long term care risks are less directly related to human
lifespan, but the incidence rates increase directly with age. Healthcare spending risk
is defined as situation where a household cannot have access to needed healthcare
services without experiencing undue financial hardship. And finally, the long term
care risk covers financial difficulties due to autonomy loss resulting, for example, at
the person integrating a nursing home.

Mortality, longevity, healthcare and long term care risk coverage has prospered in
the 20th century and became almost systematic in the developed countries.

Participation of the public sector in the insurance coverage varies from one country
to another leaving more or less participation to the private sector at the same time.
While in France the longevity risk is covered mainly by the pension system governed
by the state, in the United Kingdom pension system offers solely minimal public
pension highly supplemented by mandatory occupational private pensions. Due to
this reason the longevity insurance market in the UK is much more developed than
in France.

The before mentioned risk coverage generalisation is supplemented by the phe-
nomenon of the society-aging which present in all the developed countries.

Figure 19 illustrates the life expectancy increase observed during the last 60 years.

Figure 19: Life expectancy at birth 1960-2018, both sexes combined
(source: OECD (2018))
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Life expectancy in the developed countries now surpass or is close to 80 years, having
gained 10 years approx. of life expectancy since 1960s’, meaning that significant
amounts are needed to counterbalance the aging society phenomenon together with
the human lifespan-related risk coverage expansion.

1.3.1 Mortality

Mortality risk refers to a financial burden that an insurance company can encounter
if too many of their life insurance policy holders will die earlier than what has been
expected by the insurance company.

Mortality risk can be decomposed into three components as illustrated in the Fig-
ure 20:

Figure 20: Decomposition of mortality risk (source: Internal)

• Level assumptions

At SCOR, internal mortality data, also called mortality experience, allow to
estimate the mortality rate - asses the mortality level. Internal data allow to
capture the effect of age, gender, etc. However, there are areas where data is
scarce, such as high ages, see Figure 21 .

• Trend assumptions

In order to perform mortality forecasts, or to estimate the future mortality im-
provements, one needs long series of historical mortality data. Thus, to build
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Figure 21: Mortality level (source: Internal)

mortality trend assumptions, we supplement internal mortality data with ex-
ternal data such as national population or educational mortality data, as a
proxy of the insured population.

Different mortality datasets used to construct the mortality trend assumptions are
illustrated in Figure 22:

Figure 22: Mortality trend (source: Internal)

Mortality risk is one of SCOR’s most significant risks. Majority of the life division’s
standalone economic capital covers mortality risks (mortality shock, mortality level
and mortality trend) with the risk being concentrated in the United States.

While the life expectancy has been observed to increase over past decades, an example
of recent Covid-19 pandemic crisis has revealed how a single event can revert the
trend and put in peril life insurance companies with important life insurance policy
portfolio. According to the CDC Press release (2022), "Life expectancy at birth in
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the United States declined nearly a year from 2020 to 2021. That decline – 77.0 to
76.1 years – took U.S. life expectancy at birth to its lowest level since 1996. The
0.9 year drop in life expectancy in 2021, along with a 1.8 year drop in 2020, was
the biggest two-year decline in life expectancy since 1921-1923." Fluctuations in life
expectancy are not common and typically the life expectancy declines are quickly
followed by bounce backs. In contrast to these short-term fluctuations, however, the
COVID-19 pandemic induced global and severe mortality shocks in 2020 which are,
to some extent, still ongoing.

1.3.2 Longevity

Longevity risk is one of the largest risks that insurance and reinsurance compa-
nies, pension plans, and the governments are exposed to. Longevity risk from the
perspective of an insurance company or defined benefit plan is the burden that a
company has to deal with due to unexpected decreases in mortality. This is the op-
posite of mortality risk, which is exposure to increases in mortality. Longevity risk
has developed as experience emerges about the consistent increase in life expectancy,
combined with the long term nature of many guarantees that insurance companies
have written.

As already discussed, most of the developed countries have been seeing the life ex-
pectancy of their population increase due to factors that include better diet, in-
creased access to adequate amounts of food and basic healthcare, and advances in
medicine. With concurrent declines in fertility rates, many countries are witnessing
a demographic shift towards a ‘graying’ population, where the number of people in
retirement is rapidly catching up with the number of people in the workforce, see
Figure 23. All across the globe this is putting strains on existing retirement systems,
and leading to a shift in the risk from employers and plan sponsors to individuals.

On the other hand, some actuaries and academics argue (see National Academies of
Sciences, Engineering, and Medicine (2021)) that we would soon observe the trend
invert for the life expectancy increase which has been observed in the past decades.
The dramatic increase of obesity rates over the last decades could be the biggest issue
leading to this conclusion. The wide panel of views on future mortality trends indicate
that there is a great deal of uncertainty regarding mortality improvement, leading
to an ever greater need for action by the industry to understand the fundamental
drivers of longevity risk.

The aging society phenomenon and expansion of insurance coverage imply consider-
able capital to cover the longevity risk.

Substantial assets have been accumulated in retirement savings plans to finance
future pension benefits around the world. Pension assets exceeded USD 56 trillion
worldwide at the end of 2020 (see OECD (2021)), a 11% increase compared to end-
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Figure 23: Population pyramids, EU-27, 2019 and 2100 (% of total popu-
lation), source: Eurostat

2019 when they amounted to USD 50.6 trillion. Seven out of the 38 OECD countries
held more than 90% of the total pension assets within the OECD area. The United
States has the largest pension market within the OECD, with assets worth USD 35.5
trillion, representing 65.6% of the OECD area total (Figure 24). The United Kingdom
recorded the second largest amount (USD 3.6 trillion, i.e. 6.6% of OECD area pension
assets), followed by Canada (USD 3.1 trillion, 5.7% of OECD area pension assets),
the Netherlands (USD 2.1 trillion, 3.9% of OECD area pension assets), Australia
(USD 1.8 trillion, 3.3% of OECD area pension assets), Japan (USD 1.6 trillion, 2.9%
of OECD area pension assets) and Switzerland (USD 1.3 trillion, 2.5% of OECD
area pension assets). The 31 other OECD countries jointly hold the remaining 9.5%
of pension assets in the OECD area.

Pension assets have increased faster than GDP over the last decade, highlighting the
growing importance of retirement savings worldwide.

SCOR is exposed to Longevity risk which is concentrated in the UK, corresponding
to dozens of billions pounds of underlying Present Value of Pension expected to be
paid to annuitants. The longevity risk represents the danger that more is paid out
because of increasing life expectancy. SCOR covers only the biometric risk, excluding
asset risk associated with delivering pension. This type of insurance contract is called
longevity swap.
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Figure 24: Geographical distribution of pension assets in the OECD area,
2020

1.4 Solvency II

The solvency of insurance and reinsurance companies is defined as the ability to
meet their short, medium and long-term commitments to their clients. The solvency
depends on the commitment size, guarantees and protection that are offered to the
insured, and the resources put in place to meet these commitments.

Solvency II is the prudential regime in the European Union for insurance and reinsur-
ance undertakings that has entered into force in January 2016. Solvency II sets out
requirements applicable to insurance and reinsurance companies in the EU with the
aim to ensure the adequate protection of policyholders and beneficiaries. Solvency II
has a risk-based approach that enables to assess the “overall solvency” of insurance
and reinsurance undertakings through quantitative and qualitative measures. The
Solvency II regulatory framework is built on a three-pillar structure:

• Pillar I sets the quantitative requirements i.e. the assets and liabilities valuation
and capital requirements. The Pillar I concentrates on the economic balance
sheet, the resulting actual own funds, and the required risk-based own funds.
Required own funds are determined based on a Solvency II Standard Formula,
or by means of an internal model.

• Pillar II sets the qualitative requirements, including governance and risk man-
agement of the undertakings and the Own Risk and Solvency Assessment
(ORSA).

• Pillar III sets the supervisory reporting and public disclosure.

The three pillars form a coherent approach that allow to understand and to manage
risks across the sector.
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SCOR has chosen to develop internal model to assess individual risk profile and
characteristics of the company’s business rather than use the standard formula ap-
proach which is proposed by default by the regulator. The internal model is subject
to regulatory approval and is required to meet several requirements:

• Use test: requirement to fit the business and reflect the risk profile, and to be
widely used in company’s decision making and governance process.

• Statistical quality: minimum statistical standards must be met together with
sound methodology justification for assumptions like management actions, risk
diversification, expert judgement etc.

• Calibration standards: ensure that the SCR calibrated corresponds to 1-in-200
scenario.

• Profit and Loss attribution: review of sources and causes of P&L for each major
business unit.

• Validation standards cover on-going model validation process, validation policy
and sensitivity, stress and scenario testing.

• Documentation standards

• External models and data: consistency with the internal model standards and
suitability to the undertaking’s risk profile.

1.5 Footprint scenarios

Scenarios, characterized by deterministic events, also called Footprint scenarios, can
be based on historical experiences or imagined situations. These scenarios permit
companies performing a “what-if” type of analysis, i.e. estimating impact from events
like hypothetical terrorist attack in Madison Square Garden or Great Kanto earth-
quake repeating itself. Scenarios can touch one or several lines of business and all
the exposure-to-risk should be assessed. Metrics like crude or net losses of the com-
pany, changes in solvability ratio or rating can be used to evaluate footprint scenario
impact. Footprint scenarios are easy to understand and to communicate and they
contribute to risk culture development in the company. They are also complementary
to probabilistic models and permit taking a step back from the models and enable
assessing risks that are partly or not sufficiently modelled.

Article 242 of the delegated regulation, published in the Official Journal of the Eu-
ropean Union, provides in particular that the statistical process for validating the
internal model must include a reverse stress test in order to identify the most prob-
able crisis situations which could threaten the viability of the insurance company. In
addition, the ACPR notice on the internal models which specifies this provision pro-
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vides that the insurance company ensures that the stress test and scenario analysis
used cover the relevant risks and are monitored over time. SCOR includes scenario
analyses into its validation process for the calibration of long-term mortality and
longevity - most import life underwriting risks of the company.

A working group of experts established from the risk management, knowledge and
business acceptance teams consider plausible but severe scenarios that would impact
future mortality and determine their impact on SCOR’s portfolios. The scenarios
were chosen to be both severe but also plausible and also to test whether the modelled
negative correlation between mortality and longevity could fail in certain extreme
scenarios.

Scenario about future trends of Alzheimer’s and dementia diseases has been intro-
duced based on several criteria. First, the scenario needs to extreme but plausible -
a scenario around curing Alzheimer’s disease would be in line with probable medical
advances in the near future. Also, the goal of the scenario is to test diversification
impact between mortality and longevity business lines. The scenario is likely to have
important cumulative impact from both longevity and mortality books and not to
totally offset one another: Alzheimer’s disease affects mainly very high ages and as
the longevity insured population is older than the mortality’s one. An important
(negative) impact could be expected on longevity business with some but not total
offset from mortality due to differences in age distribution, see Figure 25.

Figure 25: Age distribution in Mortality and Longevity business and US
male age-at-death distribution for Alzheimer’s & dementia disease
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1.6 Alzheimer’s and dementia

Alzheimer’s disease and dementia are major public health challenges in many coun-
tries of the world, particularly in Western Europe and North America where aging
population is a major issue. Population aging became a concern in countries like
Latin America or China putting Alzheimer’s and dementia diseases in the spotlight
recently.

It is estimated that around fifty million people have dementia worldwide. About two-
thirds of them have Alzheimer’s, according the report by Alzheimer’s International.
Research on Alzheimer’s and dementia has been gaining in support substantially -
work on new screening, diagnostic and therapeutic applications have surged recently
supported by large private and public funding. Many experts are optimistic about
breakthroughs in Alzheimer’s and dementia in the short to mid-term future, see
Alzheimer’s Association (2021b), Shekelle et al. (2020).

As discussed in Buffet et al. (2022), dementia is in fact a general term characterizing
memory loss and other mental abilities extreme enough to interfere with daily life
activities. It covers a wide range of specific medical conditions caused by physical
changes in the brain. Alzheimer’s is the most common type of dementia, but there
are many others such as vascular dementia, Lewy body dementia and Huntington’s
disease, etc.

Dementia impacts more than 50 million people and kills about 1.5 million annually
worldwide, according to Alzheimer’s Association (2021b), making it the second lead-
ing cause of death in high-income countries in 2019, overtaking stroke, see World
Health Organization (2020). In the U.S., more than 6 million Americans are living
with Alzheimer’s disease. By 2050, this number is projected to rise to nearly 13 mil-
lion, according to Alzheimer’s Association (2021c). In 2021, Alzheimer’s and other
dementias will have cost the U.S. $355 Billion. These costs are projected to balloon,
hitting an estimated $1.1 Trillion by 2050.

This thesis covers an in-depth footprint scenario analysis, developed using sophisti-
cated modeling and implementation of a shock on Alzheimer’s and dementia mor-
tality, and assesses its impact on life expectancy, portfolio diversification gains in
multiple scenarios.

1.6.1 Types of dementia

Different types of dementia are associated with particular types of brain cell damage
in specific regions of the brain. Figure 26 displays the most common types of dementia
and their prevalence.

60-80% of dementia cases can be classified as Alzheimer’s disease. In this disease,
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Figure 26: Types of dementia (source: Alzheimer’s Association (2021a))

brain cells have trouble staying healthy and communicating due to high levels of
certain proteins inside and outside brain cells.

5-10% of all people with dementia have vascular dementia, which is the second most
common type of dementia. This disease develops because of microscopic bleeding
and blood vessel blockage depriving various brain regions of oxygen and nutrients.
Vascular dementia is common as part of mixed dementia.

Another 5 to 10% of all dementia cases fall under Lewy body dementia type. This
type of dementia is caused by abnormal microscopic deposits that damage brain cells
over time and lead to a decline in thinking, reasoning and independent function.

And finally, mixed dementia is diagnosed to someone simultaneously experiencing
multiple types of dementia. For example, in the study carried on by James et al.
(2016) involving long-term cognitive assessments followed by brain autopsy, 94% of
participants who were diagnosed with dementia were diagnosed with Alzheimer’s.

Coexisting pathologies were observed in 54% of autopsy cases of those diagnosed
with Alzheimer’s, with evidence of a vascular disease being the most common coex-
isting abnormality. Lewy body dementia was the second most common brain change
observed.

1.6.2 Potential breakthrough and impact on the life insurance

As reviewed in Buffet et al. (2022), increasing support has been brought to clinical
and pre-clinical research on Alzheimer’s and dementia diseases. Following a $289 mil-
lion increase in March 2022, and added to current spending, the National Institutes
of Health spending is expected to total $3.5 billion on research into Alzheimer’s and
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dementia, according to Alzheimer’s Association (2022). This unprecedent funding for
Alzheimer’s and dementia research will participate to speeding up investment in col-
laborations that accelerate discovery, scientists will be able to work at a more rapid
pace to advance basic disease knowledge, explore ways to reduce risk, reveal new
biomarkers for early diagnosis and drug targeting, and develop potential treatments.

Short and mid-term future for Alzheimer’s and dementia breakthroughs is considered
as optimistic by many experts. Shekelle et al. (2020) judge 10 breakthroughs as
being at least 70% likely to occur by 2037. This optimism is also reflected in the
clinical pipeline for new therapies addressing disease-modifying biologics, cognitive
impairment, and neuropsychiatric symptoms with symptom-reducing agents now in
Phase II and III clinical trials as reviewed by Cummings et al. (2021).

In September 2022, Lecanemab, an experimental drug was shown to alter rate of
memory decline and thinking in patients with early Alzheimer’s disease. This achieve-
ment has been called as a “historic moment” for dementia treatment in the research
community, see Eisai (2022).

Another important discovery was made in October 2022, see Swaddiwudhipong et al.
(2022). Scientists have discovered that as early as nine years before patients are
diagnosed for one of dementia-related diseases, it could be possible to detect signs of
brain impairment in the patient. This prominent result leads to believing that in the
future, screening could be proposed to individuals at risk to help select those who
would benefit from treatment to decrease the risk of developing one of the conditions.

• Progress in risk detection

Research in the accurate and widespread early detection will be one of the most
attractive areas for scientists working in the Alzheimer’s and dementia field as
most of the dementia diagnoses happen once the patient starts experiencing
memory loss. One of the most promising areas of early detection-related re-
search is Neuroimaging. Deep learning and other artificial intelligence methods
will participate in speeding up the risk identification process. Another valuable
risk assessment could be proven to be tool genetic profiling. To date, around 70
genetic variants have been reported to be associated with Alzheimer’s disease
risk. And finally, biomarkers are believed to offer one of the most promising
paths. Researchers are currently investigating whether Alzheimer’s and demen-
tia cause consistent and measurable changes in blood levels of tau, beta-amyloid
or other biomarkers before symptoms appear. Furthermore, researchers are ex-
ploring whether early detectable changes can appear elsewhere in the body
such as ocular changes by neuroretinal exams.
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• Progress in risk reduction and prevention

Modifiable risk factors will play an important role to prevent, delay the onset
and slow down the disease progression as result of interventions that seek to
target and modify these risk factors. It is believed that over one third of the
dementia cases could be prevented by addressing the risk factors in the next 25
years. More and more evidence confirm nine previously identified risk factors for
dementia - low education, hypertension, hearing impairment, smoking, obesity,
depression, physical inactivity, diabetes, and poor social contact. Three new
factors, excessive alcohol use, traumatic brain injury, and air pollution, were
also recently added to the list.

All the progress in treatment as described above would decrease the rate of progres-
sion of the disease and could modify its long-term trajectory. Furthermore, future
treatment would target the disease in its earliest stages, before irreversible brain
damage or mental decline occurred.

As of December 2021, more than 160 agents with diverse mechanisms of action have
been registered in the clinical trials for Alzheimer’s disease, see U.S. National Library
of Medicine (Accessed December 16, 2021). There are currently 113 clinical studies
in phase 2/3 and 48 in phase 3 clinical trials. These studies are evaluating the safety
and efficacy of new molecules and repurposed drugs. Experts predict that future
Alzheimer’s treatments could include a combination of medications, similar to how
treatments for many cancers or HIV/AIDS include more than a single drug.

Alzheimer’s and dementia diseases are covered in many existing insurance policies,
including life insurance, long term care and critical illness. Considering the aging
population, the growth of proportion of those who suffer from Alzheimer’s and de-
mentia diseases will be significant. Without even considering impact on mortality,
the cost associated with the care and treatment for patients of which insurers need
to share the burden can be significant.

According to the 2020 Alzheimer’s Disease Facts and Figures report by the Alzheimer’s
Association (2020), over 19 million family members and other unpaid caregivers pro-
vided an estimated 18.6 billion hours of care to patients with Alzheimer’s or other
dementias. In the United States, beneficiaries of age 65 and older receive Medicare
payments that are three times higher for someone with dementias than for someone
without the condition, while Medicaid payments are more than 23 times as great.
Total payments in 2020 for health care, long-term care and hospice services for peo-
ple age 65 and older with dementia are estimated to be as much as $305 billion.
Moreover, non-monetary negative impact on caregivers and family members such as
mental and physical health will be considerably high.

If this negative trend could be turned around with the advancement in cure and
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treatment combined with increased prevention efforts as discussed above, it would
be a tremendously positive effect for both insurance industry and the society. Insur-
ance and reinsurance companies have a massive stake in this global effort to fight
against Alzheimer’s and Dementia. SCOR has committed to take a proactive part
with several initiatives including internal R&D initiatives such as this footprint sce-
nario analysis and collaborative research and partnerships with external medical
experts and research institutions.
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Chapter 2

Mortality modelling

This second chapter will provide a brief overview on the history and introduce con-
cepts used in the mortality modelling. Different manners to approach mortality pro-
jecting are introduced, starting by all-cause mortality models and then moving to a
more granular cause-specific mortality modelling concept.

2.1 History of mortality modelling

This section gives overview of mortality modelling history as described in Piveteau
(2021) doctoral thesis.

Modelling human mortality has a very long history with demographers, insurance
mathematics and academicians trying to tackle the subject for several centuries al-
ready. By aiming to understand factors influencing mortality, one addresses modelling
lifespan as random variable.

Oldest known attempt to describe and model mortality dates back to the 17th century
when Graunt (1973) first examined mortality in London by using public statistics
provided in the London Bills of Mortality. Amongst other important results, he
showed that while individual lifespan was unpredictable, mortality pattern could be
easier estimated by working by causes of death or groups by age or socio-economic
environment. On the turn of the century, Halley (1693) proposed a method to build
reliable mortality tables using birth and death statistics. He even proposed a method
to perform annuity calculation based on this mortality table. Work by DeMoivre
(1725) can be qualified as a breakthrough in mortality modelling as he was the first
to model survival function as a continuous function with respect to age.

Gompertz (1825) published his law of mortality and proposed the notion of force
of mortality µx and assigned it a parametric expression. Force of mortality (also
referred to as mortality intensity) at age x is defined as:

µ(x) = lim
u→0

P(T ≤ x+ u|T > x)

u
.
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The resulting survival function S(x) = P(X > x) can be written as:

S(x) = e−
∫ x
0 µsds.

After observing adult mortality, Gompertz concluded that the force of mortality
seems to have exponential growth by age and so proposed the following expression:

µx = aebx.

Makeham (1860) refined the model by adding a parameter modelling general mor-
tality unrelated to age:

µx = aebx + c.

The Gompertz-Makeham model is still widely used for adult mortality modelling, see
Gavrilov and Gavrilova (2011) and Kirkwood (2015). This piece of work was great
impetus to parametric modeling of an average lifespan. Over the years, the method
gained in sophistication to reflect observation that infantile mortality seems to have
different dynamics than the exponential form observed in the adult mortality. By
the end of the 20th century, the mathematical model structure became excessively
complex. Heligman and Pollard (1980) suggest an eight-factor model that fits every
age:

µx = A(x+B)C +De−E(log x−logF )2 +GHx.

Parameters are divided into three groups to distinctively describe infantile, adult and
old-age mortality. Concerning the old age mortality, Thatcher et al. (1998) delivered
extensive studies using several sources of reliable data and fitting different models on
ages 80 and above. The model evaluation of study revealed the logistic model being
the best mathematical model for human mortality, putting aside the widely used
Gompertz and Makeham model. The logistic model assumes the force of mortality
µx being a logistic function of age x.

All of the models discussed above model human mortality at a fixed point in time
or over a very short period of time, while actually mortality is stochastic and con-
stantly evolving. Accordingly, to account for the mortality stochasticity, the model
parameters would need to be fitted periodically as by construction they are static.
With the life expectancy constantly increasing since the 19th century in the devel-
oped countries, mortality estimations made solely from the observed past became
obsolete. Including mortality dynamics with respect to time becomes a necessity to
obtain reliable future mortality projections.

2.2 Prospective mortality modelling

A work by Swedish astronomer Hugo Gyldén in 1875 can be called first known
prospective mortality study, see Cramér and Wold (1935). Gyldén used Swedish
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population mortality data over 1750-1870 to fit a straight line and proposed this
linear function as probable future mortality forecast. This first method proposed was
of course very primitive as the proposed projection introduced unique estimation for
all ages.

Another attempt to assess mortality dynamics date to end of 19th century as Cannan
(1895) integrated a cohort component to England and Wales mortality description.

In 1912, another Swedish astronomer and mathematician Andres Lindstedt devel-
oped pensioner mortality table by using Swedish mortality data up to 1907 and
extrapolating annual probabilities of death. This extrapolated table was widely used
in Sweden and described well the experience observed in 1911-1915. When explaining
his method, Lindstedt emphasized the importance for the projections to be based on
past mortality change extrapolations.

Efforts to project force of mortality were rather rudimentary up to 1970s when statis-
tical time series methods were published by Box and Jenkins (1970). Few years later,
first application of the methods were carried out in demography by Saboia (1974).
Time series presented with numerous advantages, one of the most important being
the probabilistic framework that would permit not only quantifying future mortality,
but also it’s distribution, enabling confidence intervals construction.

Up until 1990s, mortality modeling was not any different than adopted for any time
series: after estimating life expectancy or force of mortality on the observed historical
data, model parameters were projected as usual time series. In the 90s, stochastic
models started appearing simplifying estimation process and providing relevant re-
sults. Amongst these newly-appeared model the most popular is by far the Lee-Carter
(LC) developed by Lee and CarterLee and Carter (1992). We will provide detailed de-
scription of the Lee-Carter model here following as the this model will be repeatedly
referred to and used in this study.

Let x be age taking values from 1 to xmax with time spanning from 1 to T . Let
µx,t note the force of mortality for age x and year t and so the Lee-Carter model is
described as follows:

log(µx,t) = αx + βxκt + ϵx,t, (7)

where αx is some average mortality at age x, κt describes overall mortality evolution
through time, βx represents sensitivity to κt dynamics by age and ϵx,t describes the
error term.

In the original version of the Lee-Carter model, the error terms are independent and
identically distributed (iid) - ϵx,t ∼ N(0, σ2) and the κt dynamics are modeled using
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Random Walk with Drift (RWD) as a stochastic process:

κt+1 = κt + δ + ηt, (8)

where δ is the drift parameter and ηt ∼ N(0, σ2).

Model is calibrated in two steps.

First, parameters αx, βx and κt are estimated by minimising least squared errors. As
the authors identified in the Lee-Carter introductory article Lee and Carter (1992),
without adding constraints to the parameters the model is not identifiable. In fact,
let the parameter set αx, βx and κt be one that minimizes the sum of quadratic errors
of the L-C model and C be a constant not equal to zero. In this case, the parameters:

κ∗t = κt + C,

α∗
x = αx − Cβx,

β∗x = βx

will also minimize the sum of quadratic errors. So a constraint on the parameters
is required to have identifiable model. The most conventional constraint is setting∑

x βx = 1 and
∑

t κt = 0. This is only one of possible constraints to obtain identifia-
bility of the model and further in this thesis we will see how other than this particular
constraint can prove to be more of interest for specific cases. And finally, as the κt
dynamics are modeled by Random Walk with Drift, the δ parameter estimator is
given by δ̂ = κT−κ1

T .

The work of Lee and Carter has been widely acknowledged and cited, and was also
used as a benchmark model by the U.S. Bureau of the Census for long-run forecasts
of age-specific mortality rates, see Hollmann et al. (1999).

Success of the Lee-Carter model generated variants of the latter proposed over the
recent years. Multiple papers published tried to improve the Lee-Carter model by
adding more principal components, cohort effect or other similar statistical quanti-
ties.

A log-bilinear model by Brouhns et al. (2002) is a Lee-Carter model extension con-
sidering deaths as a random variable of Poisson distribution. Let us denote Dx,t the
number of deaths and the Ex,t the exposure at risk of age x at year t, and so the
Lee-Carter Poisson model is described as:

µx,t = exp(αx + βx + κt),

Dx,t ∼ Poisson(Ex,t ∗ µx,t) =
(Ex,t ∗ µx,t)Dx,te−Ex,t∗µx,t

Dx,t!

40



with constraints similar to the original Lee-Carter model.

Li and Lee (2005) extended the Lee-Carter model to account for dynamics in several
population mortality simultaneously, while Booth et al. (2006) proposed optimal
time period choice of the time-dynamics parameter κt and compared 5 Lee-Carter
model variants for 10 different populations. Renshaw and Haberman (2006) adds a
cohort effect to the Lee-Carter model by incorporating the year of birth variable,
permitting to account for the commonly observed generational differences.

Other models that are not a direct version of the famous Lee-Carter model are also
introduced, such as the CBD model presented by Cairns et al. (2006a).

Even though the mentioned models are rather efficient at measuring and predict-
ing general mortality, they are not always appropriate when one seeks to take into
account mortality’s heterogeneity phenomenon.

2.3 Mortality by cause of death

When speaking about heterogeneity of the mortality one can have different aspects in
mind. First, we can distinguish differences between mortality on a socio-economical
level - variables affecting mortality are unequally distributed in the population caus-
ing mortality risk differences. Individuals tend to make different lifestyle choices, like
diet, tobacco consumption, etc. that impact their lifespan. At the same time, de-
pending on the social system and insurance cover of the person, he or she will have
variable access to medical care that will also influence their health and so mortality.

In the U.S., a group of researchers, led by Stanford University economist Raj Chetty,
analyzed income data for the US population from 1.4 billion tax records between 1999
and 2014, see Chetty et al. (2016). They discovered that, from 2001 to 2014, the 25%
richest Americans gained about three years of longevity, while life expectancy for the
poor increased only by one year, see Figure 27.

These mortality inequalities due to personal wealth and education level can be re-
solved by data choice, to some extent. We are interested in insured population mor-
tality, and for that we create an insured population data proxy. We detail more in
Chapter 3 the motivation for data choice that is related to mortality heterogeneity
in this aspect.

At the same time, mortality heterogeneity can represent differences in causes result-
ing in death. If we can distinguish mortality by different causes, one can observe
variations in both death probabilities by age and their dynamics. Figure 28 depicts
US male national population mortality at age 65 since 1980s’ by with causes of death
grouped into “Accidents”, “Cancer”, “Cardiovascular diseases”, “Respiratory diseases”
and “Other”. While the dynamics seem similar for “Accidents”, “Respiratory” and
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Figure 27: Changes in life expectancy by income group, 2001 to 2014
(source: Chetty et al. (2016))

“Other” causes over the observed time period, the mortality due to cardiovascular
diseases has significantly different trend from the rest of the causes. Advances in
prevention, decline in cigarette smoking, improved hypertension treatment etc. - the
facts that contributed to this considerable drop in cardiovascular disease mortality,
that are observed in majority of the developed countries, are well known. However,
the trend shows signs of reversal starting around year 2010, and opinions have been
surging if the cardiovascular disease mortality has not reached its plateau (see Men-
sah et al. (2017)). As it can be observed from Figure 29, the all-cause mortality
trend resembles quite well the cardiovascular disease mortality’s trajectory, as the
cardiovascular mortality drop was the main reason behind the all-cause mortality
decline. If we referred uniquely to all-cause mortality modelling, future mortality
projections would continue the cardiovascular disease mortality declining trend into
the future. Modelling mortality by cause of death permits getting into more granular
level, and so expert judgement could be applied on the cardiovascular disease mor-
tality to “correct” the future trend and take into account the slowdown of mortality
decline.

2.3.1 Challenges

Cause of death is the primary pathology due to which the death occurred, recorded by
the medical personnel on the death certificate. As simple as this may seem, multiple
issues are related to this analysis by cause. The following challenges were recognized
and in-depth covered in the 2022 Human Mortality Database conference, see Arnold
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Figure 28: US male cause-specific mortality rates at age 65

(2022).

• Selection rules for the underlying cause of death might be arbitrary: medical
personnel could base their decision for the underlying death cause on many
human factors that we cannot control for.

• Within a cause-of-death group, we have several diseases: even if the cause-of
death information might be available at a very granular level, to have sufficient
data one will need to regroup small causes into larger groups.

• Changes within the classification: pathology classifications evolve through time
with some pathologies emerging and some being refined in the classifications.

• Differences in interpretation of international rules, in coding practices and in
training of physicians across countries and medical personnel might not con-
sider different medical conditions throughout the years. Some conditions that
were not identified earlier as causes of death and gained in importance with
time would alter the cause of death distribution and would obstruct analysis
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Figure 29: US male all-cause mortality rates at age 65

over long period.

• Cause-of-death reporting are less reliable at older ages where most of the deaths
occur due to the frailty of elderly and often multiple conditions being present
at time of death.

• Different causes impact different age-groups.

• Available time series are often very short and make plausible future mortality
forecasts complicated to obtain.

• Multiple causes of death: in death certificates, several causes can be identified,
with explicitly enumerating those by importance. It is difficult to clearly dis-
tinguish the principal cause of death when the person was subject to multiple
conditions leading to death or if the conditions were cumulative to the death
outcome.

• Miss-classifications of deaths by cause can also be an issue due to human-error
presence.

• Interdependence between the causes of death (competing risks) add a layer of
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complexity for modelling compared to aggregate mortality analysis. This thesis
will attempt to propose specific approach to tackle this topic.

• Data limitations for disaggregated data are also important subject as time
series analysis and model parameters for causes of death are often less stable
than parameters in aggregate mortality model.

• Changes in diagnosis of causes over the years represent also an important issue
that can prevent from having sufficiently long series of data.

• New causes of death and changes in the relative importance of known causes
of death that will result to modifications and changes in classification system
and again will obstruct data stability through time.

• Different causes have very different patterns and using unique model for all
causes might not be appropriate.

• In every dataset there will some deaths that will be labeled as “Unknown” or
“Unclassified”. How should we treat deaths not ascribed to a specific cause?

• Cause-of-death mortality is linked to socio-economic groups and analyzing na-
tional population mortality might be very different than looking into, for ex-
ample 10% of the wealthiest persons of the same population.

To control some of these issues and not to alter cause of death analysis, several
choices can be introduced. First, we can regroup causes into sufficiently large groups
that would be less or not at all sensible to treating conditions differently through
time. Also, one can exclude very high ages from the analysis, and this for several
reasons. Individuals who survive to high ages have very often several conditions
without one explicitly main and the primary cause of death will often depend on the
expert judgment of the person signing death certificate. Besides, the data become
rather scarce in high ages already when dealing with all cause mortality, so splitting
the numbers into more granular count by cause of death seems unreasonable and
problematic. We also choose to approximate insured portfolio to account for mortality
difference between national and insured populations.

2.3.2 Competing risks

The analysis of competing risks data has a long history, starting when Bernoulli
(1760) published his work on smallpox impact on mortality and advantage of inoc-
ulation in 18th century Europe.

Competing risks are very important aspect to take into account when dealing with
mortality by cause of death. Every human is continuously exposed to many risks of
death, such as cancer, heart disease, and accidents. As death event is not repetitive
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and will be in majority of cases associated to one single cause of death, these risks
will compete with one another for the life of a person. If we are interested to study
cardiovascular diseases as cause of death, for example, some persons will die from
other causes during the time period observed. These persons will not die anymore
from cardiovascular disease but also they will not be observed to the end of obser-
vation period. As a result, we call these events competing risks, in a sense that the
probability of each competing event is somehow regulated by the other competing
events. This leads to the survival process determined by multiple types of event.

2.3.3 Cause-specific mortality modelling

Concept of competing risks demands introducing additional concepts than what are
required to study all-cause mortality. Hereafter we introduce notions of crude ant
net mortality followed by assumptions regarding dependency structure between the
survival variables.

Let us assume a homogeneous population in which every individual is exposed to m
mutually exclusive causes of death and each of these individuals may succumb to a
unique cause out of m available. As death may occur only once and due to a unique
cause, the actual time of death of an individual can be expressed as the minimum of
m cause-specific death times:

T = min(T1, . . . , Tm).

The only observed cause of death is the one corresponding to the T, that is assumed
to be unique.

Aggregate (all-cause) force of mortality (also referred to as mortality intensity) is
the instantaneous probability of death for an individual already survived up to time
t before time (t+ u) when u is relatively small time interval:

µ(t) = lim
u→0

P(T ≤ t+ u|T > t)

u
.

For a given actual time of death T , Πi(t) := P[I = i|T = t] describes probability
that the observed cause was i.

The crude mortality intensity µi(t) is the instantaneous probability of death assuming
that only one cause i exists for an individual who survived t years:

µi(t) = µ(t)Πi(t) = lim
u→0

P(T ≤ t+ u, I = i|T > t)

u
.
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The observed (crude) survival function is given by:

S(t) = exp (−
∫ t

0
µ(s)ds) = exp (−

∫ t

0

m∑
i=1

µi(s)ds)).

Despite the fact that there is only one (actual) observable time of death and the
corresponding survival time, it might be interesting to study scenarios where we
remove one or several causes of death. In this case, the corresponding net survival
function of cause i is defined as:

Si(t) = P[T1 > 0, . . . , Ti > t, . . . , Tm > 0] = exp (−
∫ t

0
λi(s)ds),

where λi(t) is the net cause-specific intensity of cause i. If studying a hypothetical
scenario cause i, the net-cause specific intensities λi(t) can be modified to reflect
expert judgement on the future mortality increase or deterioration that result from
adverse events modelled or medical breakthroughs:

λi(t) = lim
u→0

P(Ti ≤ t+ u|Ti > t)

u
= − d

dt
logSi(t).

Unfortunately, as only the actual time of death and the related cause are observed,
only the P(T ≤ t+ u, I = i|T > t) can be estimated from t he data, and not the
P(Ti ≤ t+ u|Ti > t). To this end, the joint distribution of (T1, . . . , Tm) needs to be
introduced:

S(t1, . . . , tm) = P[T1 > t1, . . . , Tm > tm].

The crude cause-specific mortality intensities µi(t) are related to the joint distribu-
tion S(t1, . . . , tm) through:

µi(t) = − ∂

∂ti
logP[T1 > t1, . . . , Tm > tm]|t1=···=tm=t.

Additional assumptions need to be made on the dependency structure between the
causes as due to competing risks, it is impossible to observe and so to identify the
exact structure, see Tsiatis (1975).

Chiang (1968) proposed to consider the causes being independent, greatly simplifying
the modelling which turns out to be very popular, see Prentice et al. (1978), Wilmoth
(1995), Putter et al. (2007)) and Boumezoued et al. (2019), Boumezoued et al. (2018)
among others. If we assume the that the survival times are independent, net and crude
cause-specific mortality intensities are equal but this “may have no resemblance to
reality” as quoted by Tsiatis (1975).
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2.3.4 Dependency structure using Archimedian copula

To assess coherently the expected mortality patterns in hypothetical conditions when
some causes of death are modified or eliminated, one needs to assume other depen-
dency structure than complete independence. The following of this thesis, assumes
dependency structure captured by Archimedean survivor copula as suggested by Li
and Lu (2019).

The survival times (T1, . . . , Tm) has a joint Archimedian survivor copula , if the joint
distribution satisfies:

P[T1 > t1, . . . , Tm > tm] = ψ(ψ−1 ◦ S1(t1) + · · ·+ ψ−1 ◦ Sm(tm)), ∀t1, . . . , tm > 0,

where the ◦ symbol stands for the composition of functions and ψ - the copula gen-
erator function. The Li and Lu (2019) paper proposes Clayton and Frank formula for
the application, and for this thesis Clayton copula was chosen arbitrary. The Clayton
copula is obtained by letting ψ(t) = (1+ t)−1/θ with parameter θ describing strength
of dependency. The higher the θ value, the stronger dependency is assumed between
survival times of different causes. When θ tends to zero, the copula reduces to inde-
pendence copula. The Clayton survivor copula, denoted by S, which is the cumulative
distribution function (CDF) of the net survival functions S1(T1), . . . , Sm(Tm):

S(u1, . . . , um) = P[S1(T1) < u1, . . . , Sm(tm) < um], ∀u1, . . . , um ∈ [0, 1],

S(u1, . . . , um) = [u−θ
1 + · · ·+ u−θ

m −m+ 1]−1/θ, ∀u1, . . . , um ∈ [0, 1].

By specifying the survivor copula S as Archimedian survivor copula, Li and Lu (2019)
showed that the net cause-specific intensities, through net survival functions, can be
uniquely estimated from the data by using crude-specific intensities and the copula:

Si(t) = ψ

[
−
∫ t

0

exp (−
∫ s
0

∑m
j=1 µj(u)du)

ψ′ ◦ ψ−1 ◦ exp (−
∫ s
0

∑m
j=1 µj(u)du)

µi(s)ds

]
, ∀i = 1, . . . ,m. (9)

Crude mortality intensities are observable and can be calculated directly as:

µx,t,i =
Dx,t,i

Ex,t

where Dx,t,i refers to number of deaths observed due to cause i of individuals of age
x in year t, and Ex,t is so called exposure-to-risk - total number of individuals aged
x last birthday in year t.

Total, or aggregated, mortality rates are direct sum of mortality rates by cause:

µx,t =
Dx,t

Ex,t
=

∑
iDx,t,i

Ex,t
=

∑
i

µx,t,i, i = 1, . . .m.
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Using crude mortality intensities that are calculated directly from the data, together
with specified copula and its’ generator function ψ we can obtain the net cause-
specific intensities Si(t) in closed form.

2.3.5 Literature review for cause-specific mortality modelling

There are multiple available methods to model and forecast mortality rates by cause.
First, and maybe the simplest approach, is to maintain the use of the classical
stochastic mortality models originating from Lee and Carter (1992). Alai et al. (2018)
used cause specific mortality in the multinomial form to capture the underlying
competing risk nature between causes, and Boumezoued et al. (2019) relied on a
multivariate Lee-Carter framework to capture the joint (stochastic) dynamics of the
cause-specific death rates, while accounting for a detailed treatment of cause-specific
historical breakpoints.

Inspired by Aitchison (1982), compositional data framework involves projecting ag-
gregated mortality jointly with by-cause proportions of deaths, so that the sum of the
proportions of cause-specific deaths over all causes is forced to always sum to one. J.
Oeppen et al (2008) first applied CoDa on the multiple-decrement mortality model
to the Japanese population. Alternatively to modelling life table deaths distribution,
Piveteau and Tomas (2018) introduce a constraint on aggregate mortality forecast
and propose modelling proportions of each cause instead.

Another approach for net and crude force of mortality modelling is based on copulas
to account for the dependence between competing risks. Kaishev et al. (2007) inves-
tigated partial and complete cause elimination by extending the results of Carriere
(1994) to include up to four causes. Dimitrova et al. (2013) generalized the copula
approach to cause-elimination by removing and ignoring causes.

In order to account for the cause-specific mortality dynamics in a coherent manner,
Li and Lu (2019) combine crude cause-specific mortality projections to Archimedian
copula-based modelling approach. The proposed concept accounts for both between-
cohort mortality improvements and the dependence between competing risks within-
cohort. Authors first derive net mortality intensities by using copula method which
models the within-cohort dependence. Then the net intensities obtained are grouped
together for all cohorts and fitted to the Lee-Carter model. Finally, future mortality
intensities are projected for all causes and cohorts and all-cause future mortality is
deduced with corresponding life expectancy forecast.

Our study will be based on the Li and Lu (2019) approach and bench-marked to
Boumezoued et al. (2019) to asses the impact of accounting for dependency between
causes.
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Chapter 3

From independence to dependence cause-
specific mortality modelling

This chapter will first present the data that are used for the mortality by cause
modelling. Afterwards, cause-specific mortality modelling approaches are illustrated,
first assuming independence and then different levels of dependence between causes.

3.1 Presentation of the data

3.1.1 Construction of insured population proxy

SCOR is majorly exposed to mortality risk in the North America’s continent, there-
fore the analysis will be performed on the US mortality data.

Number of deaths in the U.S. national population are originating from the Centers
for Disease Control and Prevention (2022). It includes data by gender, age, causes
of death, educational attainment, and other fields. Census (2010) data provided ex-
posure information. While the census is performed only once every ten years, the
American Community Survey annually provides an estimated update annually, see
ACS (2020). Educational attainment by sex and age range is also reported. By using
this information along with other data sources, such as population estimates and
proportion of educational attainment provided by the U.S. Census Bureau (2022),
mortality dynamics by cause of death can be studied by educational attainment
status. For our illustrations, highest educational attainment levels (Graduates and
bachelors) covering the period 2001-2019 are used to derive an insured population
proxy data.

It is well known that mortality rates are highly influenced by individual’s socio-
economic status, and the United States is recognized to be rather heterogenous coun-
try in this aspect: in the US, in 1992 income explained only 3 percent of mortality
inequality, but by 2016 state-level income explained 58 percent, see (Couillard et al.,
2021).

The US insured population is heavily weighted towards higher economic status, sug-
gesting that using national population mortality data to set mortality assumptions
for the insured might results in over-estimation of the mortality. The differences ap-
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pear not only regarding mortality level, cause of death mortality proportions also
vary between national and insured populations. Due to underwriting process (blood
tests, IMC measures etc.), we observe fewer deaths from cardiovascular diseases in the
insured population than in the national population, for at least 5 first years after pol-
icy inception. Figure 30 illustrates how causes have different proportions in insured
and national populations by comparing deaths observed over several years in national
population and company’s claims in life insurance. For example, Drug-related causes
(highlighted in red) are noticeably more important amongst males of national popu-
lation than what is observed in claim data. Another difference observed due to heart
attack (highlighted in blue) is mainly induced by the underwriting process before
buying insurance policy. We can also depict cancers as having higher proportions
in the insured population - the underwritting process captures well cardiovascular
diseases and so greater proportions of cancers are observed.

It would be preferable to directly use internal insured population mortality data to set
mortality assumptions, although in practice that is unreasonable due to time period
of available observations being too limited to derive medium and long-term future
mortality rates and data too scarce at some ages. For this reason insurance companies
usually seek to replicate insured population combining national population data and
various indicators that would replicate company’s policyholders.

Socio-economic status indicators that are associated with health and mortality se-
quel are wealth, income, occupation, education and race. However, US mortality
data by cause of death is only easily available for education and for county-level
(geographical) segmentation.

The county-level data can be quite heterogeneous in their socioeconomic characteris-
tics and the observed differences would be dampened by averaging across geograph-
ical entity.

The education data, however, is available at an individual person level. This allows
for better segmentation of mortality rates and mortality improvement across the US
population.

The U.S. insured population is weighted towards higher socioeconomic status which
translates to some extent to higher educational attainment levels. Significant differ-
ences in mortality rates can be observed for distinct groups of education, as depicted
by studies: “Life expectancy at birth between males with less than 12 years of educa-
tion and those with more than 16 rose from 13.4 years in 1990 to 14.2 years in 2008”,
see Olshansky et al. (2012). Figure 31 illustrates the evolution of the U.S. male mor-
tality by educational attainment for 5 age groups. Different educational levels have
significantly different both mortality levels and trends, and we can observe decreas-
ing mortality patterns persisting over all age groups for highest educational levels,
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Figure 30: Density of causes of death for U.S. national and insured male
and female populations
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while mortality increase or stagnation can be detected for lower educational levels.

By all means, this does not state that there are no policyholders with lower educa-
tional level in the insured population, only the fact that the proportions of different
educational level will be different between insured and national populations.

Figure 31: U.S. male age-adjusted mortality rates by educational level

Using mortality data weighted towards higher education levels will not cover entirely
the mortality differences between insured and national populations and insurance
companies can choose to supplement the developed assumptions with the internal
claim experience or other available data. Nevertheless, for this thesis we will construct
an insured population proxy by selecting mortality of highest educational level for
U.S. individuals. For illustration purposes the results will be presented using the
male population to avoid repetition, without loss of generality.

3.1.2 Cause of death grouping

All human deaths are assigned to a single (main) cause using the The International
Classification of Diseases (ICD) in the death certificate, which ensures common cause
of definition in different countries and regions. The ICD - medical classification list
by World Health Organization (WHO) - has different levels of granularity available.
Also, different revisions of ICD were used over time which accounts for some diseases
disappearing and emerging of new diseases. The ICD-10 has been in use since around
1994 and can provide over 25 years of unified cause of death classification.

We will seek to forecast mortality rates, and we need to ensure reasonably stable his-
torical data to build the future projections. Minimal death count must be guaranteed
to obtain statistically reliable results, therefore causes of death should be classified to
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reasonably large groups. Five large groups of causes are retained for our application,
assessing only Alzheimer’s and dementia as “small cause” as specific scenario will be
applied in the last chapter. The retained grouping is presented in Table 7.

Causes of death ICD-10 codes
Alzheimer’s and dementia F01, F03, G20-G21, G30

Neoplasms C00-C97
Circulatory system diseases I00-I99

Respiratory diseases J00-J98, U04
External causes U01, V01-Y84

Other All other causes not included elsewhere

Table 7: Cause of death grouping and ICD-10 codes

3.2 Historical observations

Cause-specific mortality rates (or more precisely force of mortality) that are used for
the further work are directly obtained from the data for all 6 retained cause of death
groups between 2001 and 2019.

It is important to understand past trends and examine those through multiple axis
to set assumptions for future projections precisely. At this stage we analyze data
for ages between 20 and 89 to assess past trends, but for the modelling and future
projections limited age range will be chosen to reflect ages at risk for the insured
population in mortality and longevity business lines.

Figure 32 depicts cause-specific mortality trends over different age groups for the
male population. Several observations can be deduced from the figures:

• For the youngest ages, External causes are the predominant cause of death
for the male population. Age band of 20:39 seem to have steady increase in
mortality due to External causes up to 2017 with a possible change in trend
over the two last years observed. For other age bands, External causes follow
rather linear trend over the whole observation period and mortality due to
External causes reduces to negligible for ages 60 and above.

• The decreasing trend in Circulatory disease mortality is observed for ages 40
and above. This decrease was the main reason for all-cause mortality decline.
Slowdown in mortality decrease is visible for ages 40:59 in most recent years,
and ages 60:74 exhibit increase in Circulatory disease mortality starting around
year 2012. For the eldest, Circulatory system diseases is the most important
cause of death and the downwards trend appears to be continuing, only at
slower pace.

• Alzheimer’s and dementia is insignificant cause of death at younger ages, which
is expected as these conditions affect individuals at high ages. Mortality due to
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Figure 32: Male cause-specific mortality rates by age band
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Alzheimer’s and dementia diseases started increasing around 2005 and appears
to stagnate as of year 2012.

The following Figure 33 illustrates cause-specific mortality evolution by age (in log
scale) in year 2010. One can observe that age structure is not consistent for different
causes. First, External cause mortality demonstrates constant linear pattern with
a sudden level jump around age 35 up to age 75 approx. increasing afterwards.
Alzheimer’s and dementia mortality exhibits the most substantial increase with age.

Figure 33: Cause-specific male mortality in 2010 (log scale)

Figure 34 depicts proportions of different causes composing aggregated mortality
over the age palette for the last year in the observation period - 2019. External
causes explain almost all the mortality of young males with the proportion decreasing
with age and reaching negligibly small proportion around age 60. Mortality due to
Neoplasms reaches it’s peak around age 60 and it’s importance start decreasing
around age 75. Circulatory disease-related mortality seems to be stable for ages 50
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to 89, and the Alzheimer’s and dementia disease mortality comes into picture around
age 60 and steadily increases to highest ages where it covers over 15% of the aggregate
mortality.

Figure 34: Cause-of-death proportions in 2019 by age

As the aggregate mortality illustrated in the Figure 29 depicts change in trend around
the year 2009, at least for age 65, let us look at life expectancy gains over the whole
period split into two intervals: 2001-2009 and 2010-2019, see Figure 35.

The observed changes in life expectancy are decomposed over the two periods showing
the contribution of each cause at each age between 20 and 89, see Vaupel and Romo
(2003) for more details. Values below zero represent a negative contribution of the
specific cause to changes in life expectancy (loss), while positive values represent a
positive contribution of the cause to changes in life expectancy (gain). Bars over all
causes and all ages sum up to total life expectancy gain over the period. Males in the
U.S. gained 2.42 years of life expectancy over 2001-2019 than can be broken down
into gain of 1.77 years in the period 2001-2009 and only 0.54 for the following period
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Figure 35: Gains in life expectancy between 2001 and 2009 (top) and
between 2010 and 2019 (bottom) for the U.S. male population
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2010-2019. Over the first time interval, important gains came from cardiovascular
disease mortality, while over the second period they were much lower. Important life
expectancy losses occurred due to increased external cause mortality in young ages,
specially in the second part of the study period. Alzheimer’s and dementia diseases
participated mainly in decreasing life expectancy over 2001-2009. Overall, a general
trend of decreasing gains in life expectancy can be observed over all causes rather
than losses in life expectancy.

3.3 Break-point algorithm

Due to important changes in cause-specific trends observed over the observation
period, simply calibrating mortality model on the whole set of data could lead to
unreasonable future projections. Instead, quantitative algorithm could be applied
on each cause time series data to detect significant changes in mortality trends, see
(Berkum et al., 2014). The time component of the Lee-Carter model (introduced in
section 2.2) can be then calibrated only on the latest retained trend if a change in
trend is detected by the break-point algorithm.

Let us assume to have at our disposal period effect κ(i)t for every cause i once the Lee-
Carter model is fit on the whole mortality data series. Let us define the first-order
differences by ∆κ

(i)
t = κ

(i)
t − κ

(i)
t−1 for t = 2, . . . T. A random walk with piece-wise

constant drift can be estimated:

κ
(i)
t =



β1 + ϵt, t ≤ t1

. . .

βj + ϵj , tj−1 < t ≤ tj

. . .

βm+1 + ϵt, tm < t

where ϵt ∼ N(0, σ2ϵ ) are independent over time. The model is estimated using ordi-
nary least squares (OLS), hence, the sum of squared residuals (SSR) is minimized:

SSR(t1, . . . , tm) =

m+1∑
j=1

tj∑
t=tj−1+1

[∆κ
(i)
t − βj ]

2

where t0 = 1 and tm+1 = T . We distinguish m break points that divide the time
series into m+ 1 periods with different drifts. Both the number of break points and
the dates of the break points are unknown.

Let β(Tm) estimates {β1, . . . , βm} based on a given m-partition (t1, . . . , tm) denoted
Tm. If we substitute these parameter estimates β(Tm) to κit formula then the esti-

59



mated break points (t̂1, . . . , t̂m) are such that

(t̂1, . . . , t̂m) = argmin(t1,...,tm)SSR(t1, . . . , tm)

where the minimisation is taken over all partitions (t1, . . . , tm) for which tj−tj−1 ≥ h.
The parameter h corresponds to the minimum period that the regime should last
and can be chosen upwards.

The break-point algorithm is implemented in the R package strucchange (see Zeileis
et al. (2022) for more details).

Nevertheless, for this thesis assessing break-point problematic through the proposed
algorithm remains complicated due to different quantities on which the algorithm
will be applied. The approach under independence assumption will fit and project
crude (which are equal to net in this case) mortality intensities, while once the depen-
dency between causes is taken into account, net intensities are used, and in addition,
different copula’s θ parameter values will produce distinctive net mortality intensity
values. For comparison purpose, we will use identical periods for all the approaches
which are varying by cause and are set arbitrary by visual inspection to produce
plausible future trend projections. Model choice can be refined by applying plausi-
bility concept to future trend evolution. Cairns et al. (2006b) introduced the concept
of biological reasonableness, drawing on the concept of economic reasonableness from
interest-rate modelling, and proposed to extend it to coherent mortality trend fore-
cast evaluation. The method is not based on any scientific, biological or medical
model, but is rather a subjective way to assess qualitatively future projections by
establishing opinion on biological factors, medical breakthroughs and environmental
changes.

The retained calibration periods for each group of causes are presented in Table 8:

Group of causes Period
Neoplasms 2001 - 2019
Alzheimer’s and dementia 2010 - 2019
Circulatory system diseases 2005 - 2019
Respiratory diseases 2010 - 2019
External causes 2010 - 2019
Others 2008 - 2019

Table 8: Periods retained for calibration

3.4 Application

The following section presents the estimation procedure and results for mortality
forecasting assuming independence between causes and compares it to copula-based
method where dependence between causes is accounted for. We will proceed with
data for ages 55 to 89 to have better representation of the age mix in longevity and

60



mortality business which will also harmonize the projections as the observed negative
trends for younger ages will be excluded from observations used.

3.4.1 Independent cause-specific mortality model

The Lee-Carter model is independently calibrated for each of the causes using crude
mortality intensities that are obtained directly from the data. As independence is
assumed between times of death for different causes, crude and net mortality inten-
sities are equal. The projections of mortality intensities for cause i are obtained by
extrapolating mortality trend κi,t. Authors (Li and Lu, 2019) propose the following
constraints as replacement to the original constraints proposed by (Lee and Carter,
1992): ∑

t

κi,t = 0, and
κi,T − κi,1

T
= d, for i = 1, . . . ,m, (10)

where d is cause-invariant constant, which will facilitate comparison between mor-
tality patterns for different causes. Under this normalization constraint, the time
parameters κi,t’s have the same average trend for all causes, and so to compare
different cause mortality improvements will restrain to comparing only βi,x’s. The
larger the βi,x, the faster the improvement. We adopt the constraint (Li and Lu,
2019) proposed d = −0.2. With this constraint, the κi,t’s will be decreasing for all
causes. Accordingly, a positive βi,x indicates that he mortality intensity of age x due
to cause i is decreasing over the observed period.

β parameters in the Figure 36 indicate that Neoplasms, Circulatory system and
Respiratory diseases were the causes where mortality decrease was observed for all
ages 55 to 89 over the period. We observe that the decline in mortality was similar
between Neoplasms and Circulatory system up to age 70, but for higher ages the
decline of Circulatory system diseases was faster. Mortality deterioration due to
Alzheimer’s and dementia causes affected all ages over 70. βx’s for the External causes
fluctuate around zero over the age range meaning that mortality mainly stagnated
due to this cause. Similar observation can be made for the Other causes for ages
above 70 while mortality due to this cause decreases for ages 55 to 70.

Even though if κ parameters have the same average trend due to the constraint
applied (10), trends are still somewhat different - κ of Other causes exhibit increased
volatility, end of the observation period had strong improvements for External causes
and Alzheimer’s and dementia disease mortality experienced increasing trend since
2012.

Future mortality rates are projected by extrapolating the period parameters κt,i’s
following Random Walk with Drift (see Prospective mortality modelling) that are
calibrated corresponding to the retained periods for each cause presented in the
Table 8. We project 41 years into the future, 2060 being the final projection year.
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Figure 36: κ and β parameters by cause of death under independence
assumption
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We obtain future mortality projections for the same age range as the initial data
- 50 to 89 years from the Lee-Carter model. To obtain cause of death mortality in
advances ages, we use approach proposed by Piveteau (2021). The method consists
first extrapolating the all-cause mortality using standard mortality table closure
methods, we use Denuit and Goderniaux (2005). In the second step, contribution by
age of each cause to the all-cause mortality is projected for older ages, multinomial
model with P-splines is used for this purpose. The product of the contributions and
all-cause mortality results in the extrapolated mortality by cause of death and we
set maximum death age 120.

Figure 37 depicts projected mortality intensities for ages 55 and 75. Age 55 will be
close to a representative age of mortality business while average age for longevity
inforce is 75. At age 55, External and Other causes are projected with an increasing
trend, and an important decrease for the Cardiovascular and Neoplasms mortality.
At age 75 we depict strong decrease in mortality rates due to Circulatory system dis-
eases and Neoplasms with slight increase in mortality due to External, Other causes
and Alzheimer’s and dementia. Respiratory disease mortality intensity is marginally
declining for all ages.

Cause-specific mortality projections allows us to better understand and validate (or
not) future hypothesis, apply expert judgement if desired and produce scenarios on
one or several causes which will be the proposal of the following chapter. Never-
theless for actuarial use one needs to assess aggregated mortality rates and see the
corresponding life expectancy that is forecasted. Aggregated mortality intensity is
obtained directly by summing up the cause-specific intensities for both past and
future projections and presented in the Figure 38.

For age 55, modest decrease in aggregated mortality is projected for approximately
ten years, then stagnating and even slight increase by the end of the forecasting
period, which is explained by External and Other cause future mortality trends
projected that are not offset by other causes over the whole period. Age 75 aggregated
mortality are expected to decline in the future.

The following table represents residual periodic life expectancy projected and ob-
served for 55 and 75 year-old males.

Residual life expectancy
Age Year 2001 Year 2019 Year 2040 Year 2060
55 26 29 30.8 32.1
75 10.1 11.8 13 14

Table 9: Periodic life expectancy under independent cause assumption

We note that the life expectancy gains are projected to slow down for both ages. For
age 55 we observed a gain of 3 years between 2001 and 2019, while the gain projected
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Figure 37: Cause-specific (crude=net) mortality intensity projections un-
der independence assumption
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Figure 38: Aggregated mortality projections under cause independence
assumption
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over the next 20 years is only of 1.8 years, and the following 20 years are predicted
to increase life expectancy of only 1.3 years. Similar results are obtained for age 75
(gain of 1.7 between years 2001 to 2019 and only 1 year between 2040 and 2060).

3.4.2 Cause-specific mortality modelling under copula-based dependency
framework

In this part, we move away from the assumption of causes being independent to the
approach introduced in section 2.3.4 that accounts for dependency between causes
within the Archimedian copula framework.

We work with Clayton copula as described in the section 2.3.4. Due to copula being
not identifiable, the results will be presented with two values of the θ parameter that
is driving the dependence intensity. As θ goes to zero, the copula reduces to inde-
pendence copula by so making net and crude intensities being equal which is exactly
the approach implemented in the previous section. To the contrary, the greater the
θ value, the stronger dependence is implied between causes. We choose θ = 1 and
θ = 4 similarly to the range of values presented in the paper of Li and Lu (2019) for
the application.

Here below we first introduce the estimation procedure for net mortality intensities
and obtaining aggregate mortality projections:

• Crude mortality intensities µi,c,t are obtained directly from the death count
and exposure data for each cause of death i, cohort c and year t:

µi,c,t =
Di,c,t,

Ec,t
, ∀i = 1, . . . ,m.

• Using the proposed net survival function expression (9), crude intensity of each
cause can be transformed to the net survival function Si,c(t). The net mortality
intensities λi,c,t can be now derived from t he net survival functions by:

λi,c,t = − log
Si,c(t)

Si,c(t− 1)
.

• The (Lee and Carter, 1992) model is used to forecast net intensities for each
cause separately. To obtain comparable results, we use identical periods by
cause for the period parameter κt projections.

• After projecting the net intensities the reverse reasoning is applied to recover
the corresponding crude intensities using equation (9). The latter are then used
to obtain the aggregate future mortality and corresponding life expectancy
projected at different time frames.
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For comparison, we use the same Lee-Carter model constraints as in the model with
independence assumption, see (10) to fit and project net mortality intensities.

Figure 39: Net κ and β parameters with Clayton copula, θ = 1

From Figure 39 and 40 we notice how the cause-specific trends are similar for different
parameter values, and introducing positive dependence structure between Neoplasms
and Circulatory system diseases reduces the difference between the two causes - β
curves are very close for θ = 4 and start diverging around age 77. In the independent
case (see Figure 36) Circulatory system and Neoplasms β were positive over the
whole age range, while introducing dependency structure β of net mortalities become
negative for ages over 85 for Neoplasms for θ = 1 and even sooner, for ages 80 and
above, for θ = 4 for both Neoplasms and Circulatory diseases.
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We can also observe the κ values for both θ parameters plateau’ing around year 2012,
with higher θ value introducing additional volatility for the Circulatory system cause
and case of θ = 1 - similar irregular patterns for the Respiratory diseases. The net
intensity trends of fast decline in mortality up to approx. 2012 with stagnation or
even increasing trend afterwards is well captured.

Figure 40: Net κ and β parameters with Clayton copula, θ = 4
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Figure 41: Crude mortality intensities, θ = 1
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Figure 42: Crude mortality intensities, θ = 4
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After fitting the net mortality intensities using Lee-Carter model and projecting κ
parameters using Random Walk with Drift, we obtain net mortality intensity pro-
jections that are used to recover the corresponding forecast of the crude intensities,
see Figure 41 for θ = 1 and Figure 42 for θ = 4.

The crude mortality intensities for External and Other caused are obtained at age
55 are lower compared to the independent case and the ones for θ = 4 are lower
than for case where θ = 4. On the other hand, for age 75 the increase in mortality
intensities for External, Other, Alzheimer’s and dementia and Respiratory causes
is more important for larger θ values. As we assume stronger dependency between
causes, so stronger common underlying factors, the trends tend to move “similarly”.

The resulting all-cause mortality intensity confirm these observations and predict
more significant mortality decrease for age 55 when assuming dependency (see Fig-
ures 38 and 42), while for higher ages mortality decrease is faster when assuming less
or no dependency, see Figures 43 and 44. Table 10 depicts periodic life expectancy
for the independence approach (θ = 0) and two dependency intensity levels:

Residual life expectancy (years)
Age 55 Year 2001 Year 2019 Year 2040 Year 2060
θ = 0 26 29 30.9 32.1
θ = 1 26 29 30.1 30.7
θ = 4 26 29 29.3 29

Age 75 Year 2001 Year 2019 Year 2040 Year 2060
θ = 0 10.1 11.8 13 13.9
θ = 1 10.1 11.8 12.3 12.4
θ = 4 10.1 11.8 11.6 10.8

Table 10: Periodic life expectancy under independent cause assumption

Assuming causes being independent generates highest life expectancy, the variation
for age 55 going up to 2.1 years by year 2060. As we saw, the mortality projected
for younger ages was decreasing with θ values, and inverse was observed for higher
ages. Supposing high dependency between causes yields to mortality stagnation and
even slight increase.
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Figure 43: Crude aggregated mortality intensity, θ = 1
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Figure 44: Crude aggregated mortality intensity, θ = 4
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Chapter 4

Scenario modelling for cause-specific mor-
tality

This final chapter will introduce footprint scenarios on Alzheimer’s and dementia
causes to perform a “what-if” analysis on longevity and mortality business blocks
and to assess diversification impact between the two business lines. We compare the
approach containing dependency structure via Archimedian copula framework with
the approach assuming independence between different causes.

4.1 Scenario overview

Footprint scenarios enable setting hypothetical or historical events in today’s per-
spective to achieve a “what-if” type of analysis and assess impacts on multiple lines of
business and company’s resistance to shocks. By assuming different levels of progress
in prevention measures and medical innovations as well as their developments in the
future, we can directly study how this impacts the life expectancy, compared to a
benchmark scenario.

The working group at SCOR derived two distinct scenarios: one considering slow-
down of the Alzheimer’s and dementia symptoms and another considering complete
disease elimination in rather near future. Both of the scenarios are results of com-
bined progress in prevention measures, innovations in risk detection and treatments,
see Buffet et al. (2022).

Majority of the diagnoses are made to patients late in life once the first signs of
disease start appearing, like memory losses. Recent discovery by Swaddiwudhipong
et al. (2022) shows that as early as nine years before patients are diagnosed for one
of dementia-related diseases, it could be possible to detect signs of brain impairment
in the patient. Early detection alone will not result in better patient outcome but is
expected to result in better care for persons at higher risk for the disease and help
select those who would benefit from treatment to decrease the risk of developing one
of the conditions.

Neuroimaging, applications of deep learning and other AI methods are expected
to speed up risk identification. In addition, genetic profiling, identification of new
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biomarkers and improving identification of functional and cognitive performance will
help diagnose the disease in its earliest stages.

Delaying the onset of the disease combined with slowing down the progression once di-
agnosed is another important axis of possible breakthrough. These could be achieved
through progress in prevention measures such as interventions enhancing or main-
taining cognitive reserve and targeting modifiable risk factors for dementia.

And eventually, to modify the long-term trajectory of disease, therefore to decrease
the progression rate of the disease, progress could be achieved through advances in
treatments such as anti-neuroinflammatory drugs, antioxidants, stem cell therapies
and drugs repositioning and re-purposing. These future possible treatments would
target the disease in its earliest stages before irreversible brain damage or mental
decline occurred.

The two hypothetical footprint scenarios for the Alzheimer’s and dementia disease
future developments are:

• a reduction in Alzheimer’s and dementia mortality due to success in delaying
onset and slowing deterioration

• an elimination of Alzheimer’s and dementia as a cause of loss of autonomy and
mortality.

First of the two scenarios delays the onset of moderate to severe symptoms while
the second one assumes a modification of the long-term disease trajectory up to risk
elimination. One needs to have in mind that in these scenarios do not correspond to
a best estimate vision developed by the medical experts. Both are very positive views
of possible future outcome with respect to health impact ans the second scenario is
particularly so.

4.2 Scenario 1

Figure 45 illustrates the disease evolution for the first of the two scenarios where
mortality decline is acquired through delaying onset of Alzheimer’s and dementia
conditions. On x-axis we represent individual lifetime. On y-axis the disease progres-
sion is represented, with two thresholds: first one is the diagnosis and the second one
is death.

Today, once a person is diagnosed with the disease, progressive onset of symptoms is
expected up to his or her death. In Scenario 1, due to early risk identification followed
by reduced risk, disease onset is delayed during the pre-clinical stage of the disease
providing postponed disease settling. Additionally, individuals with higher risk to the
disease can be identified as a result of developed detection techniques which allowed
proposing them guided treatment. After diagnosis, treatment decreases the rate of
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progression of the disease. The difference between the time at death as observed
today and expected by Scenario 1 results in a gain in life expectancy.

Figure 45: Illustration of Scenario 1

Scenario 1 is implemented assuming that advances in risk detection and prevention
measures spread over the next 15 years. Furthermore, treatments decreasing the
rate of progression of the disease lead to a reduction of Alzheimer’s and dementia
mortality by 66% by 2035, as 2019 is the last year of observation in the data and
2020 is the first year projected. After this 15-year horizon of improvement, the age
specific probability of death due to Alzheimer’s and dementia diseases is assumed to
remain at 33% of its pre-scenario projection.

We apply reduction of the Alzheimer’s and Dementia mortality on the future net
mortality intensity projections to attain 33% of the projection in 2035. The scenario
is applied first under independence assumption between different causes framework
and then compared to the approach where dependency is accounted for using Archi-
median copula structure. We provide visual result illustrations of different approaches
by presenting impacts for an 80-year old U.S. male mortality as the Alzheimer’s and
dementia mortality becomes important cause of death at relatively high ages.
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4.2.1 Independence framework

Under the independence assumption between causes, crude and net mortality in-
tensities are equal. Due to this independence assumption between causes, specific
scenario on Alzheimer’s and dementia will not affect other cause projections and so
final impact on life expectancy will come solely from this specific cause mortality
rate reduction.

Figure 46 illustrates impact on crude (equal to net in this case) mortality intensities of
applying the 66% reduction of Alzheimer’s and dementia mortality intensity reached
by year 2035 for an 80 year-old male. Cause-specific period of calibration is identical
to the one used in the previous chapter, see Table 8.

Figure 46: Scenario 1 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity under independence assumption
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The impact from decreasing Alzheimer’s and dementia mortality by 66% over the
next 15 years has visible impact due to this cause’s importance at age 75, on both
cause-specific and aggregate mortality. Due to assumption of independence between
causes, there is no offset in mortality due to causes other than Alzheimer’s and
dementia, which will not be the case in the dependency framework.

The following Table 11 depicts gains in residual periodic life expectancy for ages 55
and 75. Projected gains in life expectancy are similar for both ages in 20 and 40
years - almost 6 months over the first 20 years of projection and a bit over 7 months
over the whole projection period. There are very little gains between ages 55 and 75
as there are very few deaths due to Alzheimer’s and dementia in younger ages, even
if the relative gains are more important at age 75.

Residual life expectancy
Age Case Year 2019 Year 2040 Year 2060

55
Central scenario 29 30.9 32.1
Scenario 1 29 31.4 32.7
∆ (months) - 5.9 7.3

75
Central scenario 11.8 13 13.9
Scenario 1 11.8 13.5 14.5
∆ (months) - 5.7 7

Table 11: Scenario 1 periodic life expectancy under independent cause
assumption
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4.2.2 Copula-based dependence framework

To account for dependency between causes of death in Scenario 1, as in the previous
chapter, we use Clayton’s copula with θ = 1 and θ = 4.

Dependency structure between causes in the scenario context results in modifying
projections of causes other than Alzheimer’s and dementia, i.e. individuals that are
saved from dying of Alzheimer’s and dementia have higher chances to die from other
causes, proceeding by increase in forecasted mortality intensity for these alternative
causes. The proportion of deaths transferred depends on the dependency parameter
θ - the larger the parameter value, the more transfer between causes is observed.

Figures 47 and 48 illustrate Scenario 1 impact on crude mortality rates on cause-
specific and aggregate mortality levels for the two parameter θ values. We observe
little transfer to other causes for θ = 1 compared to θ = 4 case. Also, θ = 4 case
for age 80 exhibit unreasonable patterns for both historical fit and future projections
even producing increase in aggregate mortality. Indeed, imposing strong dependency
between causes twists the mortality patterns for all causes. Visual inspection can be
helpful to refine the set of reasonable values of the dependence parameter θ.

Table 12 presents residual periodic life expectancy gains for the Scenario 1. The
life expectancy gains for both ages 55 and 75 are lower than projected under the
independence framework due to introduced transfer between causes. Moving from
θ = 1 to θ = 4 deteriorates projected gains in life expectancy by more than two
times by year 2040, and by the end of the projection period the gap becomes even
higher.

Residual life expectancy
Age Dependency Case Year 2019 Year 2040 Year 2060
55 θ = 1 Central scenario 29 30.1 30.7

Scenario 1 29 30.6 31.2
∆ - 5 6.4

θ = 4 Central scenario 29 29.3 29
Scenario 1 29 29.5 29.1
∆ - 2.2 1.7

75 θ = 1 Central scenario 11.8 12.3 12.5
Scenario 1 11.8 12.7 13
∆ - 4.7 6

θ = 4 Central scenario 11.8 11.6 10.9
Scenario 1 11.8 11.7 11
∆ - 1.7 1.1

Table 12: Scenario 1 residual periodic life expectancy for θ = 1 and θ = 4
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Figure 47: Scenario 1 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity, Clayton copula θ = 1
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Figure 48: Scenario 1 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity, Clayton copula θ = 4
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4.3 Scenario 2

The second scenario on the Alzheimer’s and dementia disease is more extreme in
both short timeline for the medical breakthrough to be put in place and the sig-
nificant impact the scenario proposed - we assume an elimination of mortality and
loss of autonomy from Alzheimer’s and dementia diseases within the next 5 years.
The scenario applies to new cases and individuals in pre-clinical stage as well as
individuals already diagnosed with Alzheimer’s and dementia diseases.

In the scenario setting, the incidence rates of new cases drop to zero in the near future
due to progress in risk detection, disease onset delay and modified trajectory of the
condition. This important combined effect is achieved through efficient individual-
at-risk identification followed by guided treatment, important risk reduction and
prevention measures and improved treatment.

Figure 49: Illustration of Scenario 2

Scenario 2 for new cases and individuals in pre-clinical phase of the disease is il-

82



lustrated by scenario S2a in Figure 49. The scenario pattern for individuals already
diagnosed with the condition is illustrated in scenario S2b of Figure 49 where treat-
ments target the disease before irreversible brain damage or mental decline occurs
allowing a modification of the long-term trajectory of the disease up to risk elimina-
tion.

Scenario 2 assumes complete elimination of the disease as cause of death over the
next 5 years. The scenario proposed is highly hypothetical and is surely situated in
the tail of the probable scenario distribution.

4.3.1 Independence framework

Similarly to the Scenario 1, under the independence assumption between causes,
crude and net mortality intensities are equal. Due to this independence assumption
between causes, specific scenario on Alzheimer’s and dementia will not affect other
cause projections and so final impact on life expectancy will come solely from this
specific cause mortality rate reduction.

Figure 50 depicts impacts on cause-specific and aggregate mortality from Scenario
2. The decrease in mortality rates is significantly more sudden and drastic than in
Scenario 1. The gains in residual periodic life expectancy are displayed in the Table
13. Comparing the two scenarios under independence assumption (see Table 11), we
observe the second scenario providing approximately 3 additional months by 2040
and 4 months over the whole projection window of 40 years of life expectancy for
both ages.

Residual life expectancy
Age Case Year 2019 Year 2040 Year 2060

55
Central scenario 29 30.9 32.1
Scenario 2 29 31.6 33
∆ - 9 11.2

75
Central scenario 11.8 13.1 13.9
Scenario 2 11.8 13.8 14.8
∆ - 8.7 10.7

Table 13: Scenario 2 periodic life expectancy under independent cause
assumption

4.3.2 Copula-based dependence framework

Dependency structure between causes in the scenario context results in modifying
projections of causes other than Alzheimer’s and dementia, i.e. individuals that are
saved from dying of Alzheimer’s and dementia have higher chances to die from other
causes, proceeding by increase in forecasted mortality intensity for these alternative
causes. The proportion of deaths transferred depends on the parameter θ - the larger
the parameter value, the more transfer between causes is observed.
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Figure 50: Scenario 2 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity under independence assumption

84



Figures 51 and 52 illustrate Scenario 2 impact on crude mortality rates on cause-
specific and aggregate mortality levels for the two parameter θ values. Again like in
case of Scenario 1, we observe little transfer to other causes for θ = 1 compared to
θ = 4 case.

Table 14 presents residual periodic life expectancy gains for the Scenario 2. The
life expectancy gains for both ages 55 and 75 are lower than projected under the
independence framework and the gains are substantially lower for higher θ value.

Figure 51: Scenario 2 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity, Clayton copula θ = 1
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Figure 52: Scenario 1 impact on 80-year old male cause-specific (top) and
aggregate (bottom) mortality intensity, Clayton copula θ = 4
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Residual life expectancy
Age Dependency Case Year 2019 Year 2040 Year 2060
55 θ = 1 Central scenario 29 30.1 30.7

Scenario 2 29 30.8 31.5
∆ - 7.5 9.6

θ = 4 Central scenario 29 29.3 29
Scenario 2 29 29.6 29.2
∆ - 2.9 2.5

75 θ = 1 Central scenario 11.8 12.3 12.5
Scenario 2 11.8 12.9 13.3
∆ - 7.1 9

θ = 4 Central scenario 11.8 11.6 10.9
Scenario 2 11.8 11.8 11
∆ - 2.2 1.6

Table 14: Scenario 2 residual periodic life expectancy for θ = 1 and θ = 4

4.4 Additional assumptions affecting the results

The two scenarios on Alzheimer’s and dementia cause mortality and the time frame
proposed for the scenario development were set by discussions with medical experts
internally at SCOR. In addition to theses scenario assumptions, there are other
elements that have influence on the final results.

• The within-cohort dependence among the causes of death in the copula frame-
work is another parameter set by expert judgement. The greater the parameter
used, the more transfer to other causes is made resulting in larger offset in ag-
gregate mortality due to increased mortality of causes othet than Alzheimer’s
and dementia.

• The central scenario of Alzheimer’s and dementia mortality forecast at high
ages is also influencing the outcome. By choosing specific period to model every
cause, we first look for visually reasonable future mortality projection, never-
theless it gives the modeller control over the projection results. In a general
manner, the larger the projected mortality, the higher the number of deaths
saved from dying of Alzheimer’s and dementia, and the larger the potential
impact of an improvement scenario.

• The central scenario mortality projection of causes other than Alzheimer’s and
dementia at high ages also affects the result. If other causes, like Neoplasms
of Circulatory system diseases, have very high projected mortality, individuals
would die of neoplasms or cardiovascular diseases shortly after being saved
from Alzheimer’s and dementia.

• And eventually, results are affected by mortality shape of at very high ages,
i.e. the completion assumption of the mortality table. The method and age
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limit chosen will influence the outcome as it defines the survival time of in-
dividuals saved from dying of Alzheimer’s and dementia, though the effect of
this assumption is minimal once comparing different approaches with the same
mortality table completion method.

4.5 Financial impact

We observed how scenarios of different extremity have contrasting impacts on life
expectancy. Both of the scenarios are very positive views on future mortality and so
result in higher life expectancy than what was projected under the same dependency
assumption central scenario.

As discussed in sections Mortality and Longevity, Mortality and Longevity risks
are directly opposite from the insurer’s perspective - the former is related to policy
holders dying earlier than expected and the latter is related to annuitants living
longer than expected and the insurer paying pensions beyond the period predicted.

Nevertheless, SCOR’s Mortality and Longevity business lines do not entirely offset
one another. First, age mix in the two lines of business is different - Mortality business
covers mainly working population with of average age of 55, while Longevity portfolio
consists of the annuitants in payment with average age of 75. Additionally, Mortality
business in concentrated in the U.S. whereas Longevity covered by SCOR is situated
in the U.K. And finally, size of the portfolio plays important role - for optimal
diversification effect the two lines of business should be of similar size by Present
Value (PV) of Claims or other metric.

To illustrate diversification repercussion on the two scenarios in a simplified way,
we neglect the geographical placing and portfolio size characteristics and use only
average age to differentiate between the two risks. Considering the Mortality business,
changes in mortality rate assumptions have impact on outgoing claim payments at
the same time affecting the premium rates. For our illustration we look uniquely
to impact on claim amounts while ignoring the probable premium decrease, as the
premium decrease would be marginal compared to changes in claim amounts.

Both Longevity and Mortality claims are calculated using one representative model
point for each line of business, with fixed interest rate of 1.5% over the whole 40
year projection period. The Mortality claim calculations takes into account lapse
assumption observed in SCOR’s portfolio for a 10-year duration. Longevity pensions
are assumed not to be indexed which is also a slight simplification of the reality.

For the three different dependency frameworks presented in this thesis, the framework-
specific Central scenario is compared to Scenario 1 and Scenario 2 cumulative impacts
- gains from Mortality book minus the losses on the Longevity side. We set sum in-
sured for Mortality and pension amount for Longevity so that they offset one another
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entirely in Central scenario and are equal to 2000.

Independent causes (θ = 0)
Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -53 -83
(2) Longevity claims 2000 +33 +82
Total (1)-(2) 0 -20 -1

Clayton’s copula, θ = 1

Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -37 -57
(2) Longevity claims 2000 +28 +68
Total (1)-(2) 0 -9 +9

Clayton’s copula, θ = 4

Business Central scenario ∆ Scenario 1 ∆ Scenario 2
(1) Mortality claims 2000 -10 -14
(2) Longevity claims 2000 +14 +30
Total (1)-(2) 0 +4 +16

Table 15: Impact on diversification for different θ values

Assuming independence between causes results in biggest variation of claims for
Mortality and Longevity business lines, which was to be expected as the life ex-
pectancy gains were the highest under the independence framework, while assuming
high dependency between causes yields in moderate fluctuations. Both scenarios un-
der independence assumption produce drop in total claims, θ = 1 yields to small
increase in claims for Scenario 1 and drop in Scenario 2, and lastly, considering high
dependency generates higher claim amounts for both of the scenarios.

We observe how not taking into account dependency structure between causes when
modelling scenarios could yield in hypothetical gains when working in competing risk
framework would result in more moderate gains from diversification from mortality
and longevity business lines. Assuming causes being independent both scenarios re-
sults in lower claims than in central scenario, showing high diversification between
Mortality and Longevity business lines, especially for Scenario 1. Moving to low de-
pendency case (θ = 1), the reduction in total claims is twice smaller and we observe
and increase in claims for Scenario 2 instead of small gains (+9 vs -1). Hypothesis of
strong dependency between causes has even stronger impact and for both scenarios
we observe increase in claims.

Financial scenario impacts are notably different depending on the dependency as-
sumption used when modelling mortality at granular cause-specific level. Conclusion
variety concerning diversification effects and business resilience illustrates importance
of working under competing risk framework.
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Conclusion

This thesis investigates mortality modelling by cause of death under several de-
pendency frameworks - assuming independence between causes and introducing de-
pendency structure through Archimedian copula configuration. We compare the ap-
proaches adopting central scenario and footprint scenarios on Alzheimer’s and de-
mentia cause application basis. Results vary significantly in terms of both residual
gains in life expectancy and financial impact between the proposed methods.

On one hand, by assuming independence structure between causes, we do not take
into account competing risks framework. The method projects each cause of death
independently with no allowance for transfers of death between causes. On the other
hand, the alternative method introduced tries to capture dependency between the
competing causes using copula model. We use Clayton’s copula with several de-
pendence parameters to illustrate importance of allowing for dependency between
competing causes.

Application on U.S. male insured population proxy mortality data shows how depen-
dency assumption affects residual life expectancy - the aggregate mortality projected
is the most “optimistic” when assuming no dependency between causes, while high
dependent parameter values can result in mortality rate increase for some ages. Vi-
sual projection inspection permits to establish reasonable values for the dependency
parameter θ.

The footprint scenarios introduced propose several hypothetical future developments
of the Alzheimer’s and dementia disease and illustrate how cause dependence struc-
ture alters results in scenario framework. Using model points to represent mortality
and longevity business lines, we observe how not taking into account dependency
structure between causes when modelling scenarios could yield in hypothetical gains.
On the other hand, working in competing risk framework would result in more mod-
erate gains from diversification from mortality and longevity business lines.

While the introduced method is an innovative approach in cause of death modelling,
it presents several limitations that need to be disclosed.

First of all, the proposed structure imposes unique strength of dependency between
causes. We understand that Neoplasms and Circulatory system disease causes share
multiple risk factors and strong transfer of deaths between the two causes can be
assumed. On the other hand, External causes that regroup accidents and similar
smaller causes, share less risk factors with other causes. Provided that, adjustment
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in the dependency structure could enhance the method by introducing hierarchical
structure between causes, allowing for grouping causes having stronger correlations
vs. causes having lower correlations. The method enhancement is already proposed
by Li and Lu (2019).

Additionally, cause-specific mortality trends often turn out to be more volatile over-
time than aggregate mortality trends. Using Lee-Carter forecasting model for all
causes may prove to be over-simplification and more complicated modelling could be
introduced to account for dynamic differences. State-space time series models offer
a natural extension of the Lee-Carter model both in terms of the alternative coher-
ent fitting procedure and the possibility to flex the model by introducing additional
parameters to ensure a better fit, see Piveteau (2021) or Gylys (2021).

Modelling mortality by cause of death requires in-depth analysis and additional as-
sumptions compared to all-cause mortality models. However, the approach proves
to be an advantageous tool to obtain valuable observations on mortality evolution,
dissect aggregate mortality trends to cause-specific drivers and perform a “what-if”
scenario analysis.
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