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Abstract

Large institutions like banks, hedge funds or insurance companies are showing
so much interest in the cryptocurrency market. This emerging market showed
phenomenal returns during the last ten years. However, it comes with a price:
volatility and unpredictability of the price which can make those institutions
insolvent in a blink of an eye if they cannot manage the risks.

In the scope of this project, we try to understand this relatively new-born mar-
ket to hedge its multiple risks. We have studied the properties of the emerging
Bitcoin derivatives market, mainly the different actors, the volume, the bid-
ask spread ... to assess information that can be useful during the modelling
process. For the first part we used several standard stochastic models, and
showed why one should add complexity to the model varying from stochastic
volatility to jumps. The last model implemented was the stochastic volatil-
ity with correlated jumps model that groups all characteristics of the previous
ones. This model showed relatively good results. In the calibration process,
various techniques were used varying from solving optimization problems to
MCMC methods. We have later on shown that both the price and volatility
processes of Bitcoin exhibit multi-fractality using the multi-fractal detrended
fluctuation analysis and wavelets analysis. Those two methods revealed that
the bitcoin market follows the fractal market hypothesis theory and that the
process presents persistence or roughness from time to time. Thus, we con-
sidered a rough volatility model and tried to calibrate it using neural networks.
Finally, we reviewed the regulations proposed by the Basel committee.
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Résumé

Les grandes institutions comme les banques, les hedge funds ou les compagnies
d’assurance montrent un grand intérét pour le marché des crypto-monnaies.
Ce marché émergent a montré des rendements phénoménaux au cours des dix
dernieres années. Cependant, ceci a un prix : la volatilité et I'incertitude du
prix qui peuvent rendre ces institutions insolvables en un clin d’ceil si elles ne
peuvent pas gérer les risques.

Dans le cadre de ce projet, nous essayons de comprendre le maché du Bitcoinn
pour couvrir ses multiples risques. Nous avons étudié les propriétés du marché
des dérivés de Bitcoin, principalement les différents acteurs, le volume, le spread
bid-ask... afin d’évaluer les informations qui peuvent étre utiles lors du pro-
cessus de modélisation. Pour la premiere partie, nous avons utilisé plusieurs
modeles stochastiques standards, et avons montré pourquoi il fallait ajouter
de la complexité a chaque modele. Le dernier modele implémenté était le
modele de volatilité stochastique avec sauts corrélés qui regroupe toutes les
caractéristiques des modeles précédents. Ce modele a montré des résultats
relativement bons. Dans le processus de calibration, diverses techniques ont
été utilisées, allant de la résolution de problemes d’optimisation aux méthodes
MCMC. Nous avons ensuite montré que les processus de prix et de volatilité du
bitcoin présentent une multi-fractalité en utilisant ’analyse des fluctuations ten-
dues multi-fractales et I'analyse des ondelettes. Ces deux méthodes ont révélé
que le marché du bitcoin suit la théorie de I’hypothese de marché fractale et
que le processus présente une persistance ou une rugosité de temps en temps.
Ainsi, nous avons considéré un modele de volatilité rugueuse et avons essayé de
le calibrer en utilisant des réseaux de neuronaux. Enfin, nous avons examiné
les reglements proposés par le comité de Bale.

Bitcoin’s investments between Fear and Greed
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Chapter 1

Introduction

We can trace back crypto-assets to the creation of Bitcoin by a mysterious researcher
surnamed ”Satoshi Nakamoto” in the year 2008. Since then, the blockchain technology and
cryptocurrencies have gained much interest for many investors. The emergence of Bitcoin
options and futures in cryptocurrency derivatives exchanges have announced a new era
in dealing with Bitcoin and other currencies risk hedging problems. Since the market
crash of 1987, these tools gained a real interest as investors were in the need of better
strategies to protect their portfolios. Options and futures give a certain freedom to trade
and hedge volatile fluctuations in the asset price effectively. As opposed to other financial
markets, a little research was done on this growing market Which presents a major hurdle
for institutions that want to invest or already investing in Bitcoin like Grayscale, Ark
Invest, Tesla ...

In the scope of this report, we investigate Bitcoin dynamics to better hedge the risk
of investing in this new-born market. Our approach consists of implementing different
stochastic models depending on the complexity of the market to essentially better under-
stand Bitcoins dynamics and its derivative market and fit its volatility surface. The studies
done will help us derive some risk management strategies and see if the regulations that
are put on place are sufficient for cryptocurrency products.

In the forthcoming chapter, we describe the cryptocurrency derivatives market. We
compare its characteristics with more usual financial markets like the Equity, Fx or Com-
modities markets. And, therefore, try to derive some conclusions that might help us in the
modelling process.

In the third chapter, we define some stochastic processes that we would use in the
modelling process and some risk management measures that will come in handy.

In the scope of the fourth and the fifth chapter we start by implementing some classical
models starting from the most basic ones and trying to add some complexity to the model

Bitcoin’s investments between Fear and Greed 1



CHAPTER 1. INTRODUCTION

used each time to better fit the volatility surface. We try also to compare the results we
find to other financial markets. In the second part, we prove the existence of a fractal
behaviour in the Bitcoin market and try to come up with a rough model that fits the
crypto-assets changing dynamics, calibrate it and discuss the results.

In the last chapter, using the conclusion elaborated in the previous chapters, we review
the regulations put on place at the moment of the redaction of this thesis and present the
different vues of the Bale committee and the financial associations.

2 Bitcoin’s investments between Fear and Greed



Chapter 2

Cryptocurrencies Market

”God understands more about the
financial markets than many who
write about them.”

Jean-Claude Juncker

Introduction

Bitcoin was known to a tiny group of early adopters back in 2008. The most convenient
method to own this currency was to mine'it on computer. As Bitcoin grew, exchanges
were created to ease its transfer. Qver time, these exchanges were joined by increasingly
efficient financial institutions that offered improved functionality to their clients. Currently,
the Bitcoin market has sufficient liquidity for almost all traders, and new products are
constantly being added to product offerings. Over time, the exchanges were backed by more
and more efficient financial institutions. Right now, the Bitcoin market is liquid enough
for all investors and traders. Thus more investors are being interested in this market and
new financial products are being created overtime.

A growing market for sure but most importantly a new one to explore and to investigate, as
with looking into how it works, we can see how agents act to market changes. Bitcoin being
a decentralized currency that is priced by supply and demand makes information available.
In a matter of fact, being related to blockchain, one can have a lot of information about
this currency. For instance, one can have insight on its supply looking into the Hash
rate’ information . Therefore, several agents assume its market to be efficient’ thus quickly
reacting to public information. Yet seeing that bubbles and crashes can exist and that some

'Mining is the process of validating a transaction, such as in bitcoins, by encrypting the data and
storing it in a blockchain.

2

3EFH states that investors in the market act rationally and that the stock price indicates all the relevant
information.
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CHAPTER 2. CRYPTOCURRENCIES MARKET

wnwvestors were able to consistently beat the market, we might doubt this strong hypothesis.
This maight also be justified by the fact that much of the investors are new to trading and
therefore are not acting rationally yet based on mass psychology driven by fear and greed.

2.1 Bitcoin Markets’ Actors

Bitcoin miners are crucial participants. They verify the legitimacy of Bitcoin transac-
tions and revise the public ledger® using the Proof-of~-Work® system. Bitcoin is “mined”
by powerful computers that ensure not only security but also transaction transparency.
Miners are rewarded in bitcoin according to the halving principle® . Bitcoin mining is com-
putationally intensive. Therefore, it requires an important financial investment. We are
witnessing recently larger mining operations taking over the mining sphere and individual
miners colliding to form mining pools. See fig 2.1.

Total Hash Rate (TH/s)

The estimated number of terahashes per second the bitcoin network is performing in the last 24 hours

< Blockchain

Figure 2.1: Total bitcoin’s hash rate

Retail traders and investors Retail traders and investors are increasingly interested in
the Bitcoin market. Particularly because they see in Bitcoin an interesting hedge against
global economic uncertainty. Bitcoin retail investors buy cryptocurrency hoping to make
considerable long-term profit based on this investment long-term growth potential. They
generally do not actively trade bitcoin. But rather retain it as its value grows. Neverthe-
less, they attempt to realize short-term benefits through daily, weekly and monthly trades.
Institutional Investors and Traders Institutional traders and investors are however
quite relucant to invest in Bitcoin. Mainly due to its volatility and relatively low market

4The public ledger traces participants’ identities and cryptocurrency balances in a (pseudo-)anonymous
form. It transcripts all the network transactions.

>Proof of work (PoW) is a form of cryptographic process where the miner (prover) creates money by
solving a complex mathematical calculation

6Bitcoin halving refers to cutting in half the reward obtained after successfully mining a block. It also
halves Bitcoin’s inflation rate as well as the rate at which new bitcoins enter circulation
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CHAPTER 2. CRYPTOCURRENCIES MARKET

capitalization. Nevertheless, they significantly increased their adoption in recent years,
with hedge funds and quant traders from major investment banks (JP Morgan, Goldman
Sachs,etc..) leading the way. Several asset managers, and institutional investors, including
banks are now recommending their clients to invest 5% of their wealth in Bitcoin.
Corporations Corporations response to Bitcoin is highly contrasted. Several corporation
are considering Bitcoin as an investment opportunity in employees’ retirement plans, while
others are implementing Bitcoin-compatible payment systems.

Some corporations and large investors are holding massive amount to the point of being
called whales. This referring to their capacity to move the Bitcoin prices when they trade
large amounts.

Exchange An exchange acts as a market intermediate between two parties. Those who
want to buy and those who want to sell. By displaying the bids and asks of both parties,
it facilitates trades. When a buyer and a seller name the same bid and ask respectively,
the trade is executed and the exchange collect a fee. Currently, most exchanges operate
as custodians. In fact, users need to deposit bitcoin at the exchange and withdraw it only
once they finish trading Meanwhile, the exchange has full control over the cryptocurrency
which can lead to high security risks.

Different exchange markets

e Chicago CME The CME was among the first to lauch Bitcoin derivatives it opened
its bitcoin futures platform on the 18" if December 2017. In addition to bitcoin
contracts, the exchange offers micro Bitcoin futures that represent one of tenth the
size of a standard contract.

e Coinbase is a crypto company based in San Francisco, and backed by trusted
investors. It is considered the largest exchange and broker.

e Deribit The platform is one of the most famous exchange platforms, hosting futures
and options markets on both Bitcoin and Ethereum. Yet, it is not regulated.
All hosted options are European-style. The minimum order size is respectively 0.1
contract and 1 contract on Bitcoin and Ethereum. Markets operate 24/7. There are
some fees to the deribit users and to the market makers that lay within 4.5 bp and
5.5 bp These fees can be neglected later on during the quantitative analysis.

e Binance fee’s system is progressive meaning the commission is inversly proportion-
ate to one’s trading volume. As for regulations, Binance as a group is not overseen
by a specific licensing body yet it is backed by wings that are regulated in almost
each country. Binance’s trading volumes are huge yet the derivatives’ market is still
developing.

Bitcoin’s investments between Fear and Greed 5



CHAPTER 2. CRYPTOCURRENCIES MARKET

2.2 Bitcoin’s price

To understand Bitcoin’s price let’s try to answer simpler questions first: Why does Bitcoin
have value ?

Bitcoin is actually scarce meaning that there will never be more than 21 million bitcoin.
Unlike fiat currencies, it is immune to quantitative easing and other inflationary measures.
It has no leaders or voting. This protects it from malicious changes and political capture.
Finally, as a digital currency, Bitcoin can be easier to transport, store, and divide, solving
some of gold’s weaknesses. The Bitcoin price, like any other commodity and because
of it’s decentralised nature, is determined through supply and demand. Governments
cannot control it, yet one must say that they can influence their citizens’ decisions about
the currency and thus influencing demand. Bitcoin mining is though altered by changes
in energy price and the accessibility and price of computers and mining tools and thus
influencing supply.

This brings up a second question which is how the price of bitcoin is determined and why
does it differ from an exchange to another?

Bitcoin is traded 24 hours a day 7 days a week. Its heart never ceases. Every minute
bitcoin’s heart beats again and therefore there is no closing price. Its value is determined
upon a rolling average. That means that given that there is no global standard for the price
of bitcoin, investors cannot be sure that Google, a digital currency exchange, or another
price tracker is accurate since most price trackers calculate an average estimate on the
price of bitcoin, traded recently, based on the trading book of a trusted bitcoin exchange.
For instance, Google bases its figures off of the Coinbase API, that explains the fact that
it directly converts the value of bitcoin to the U.S. dollar.

Finally, the level of supply and demand may vary across different exchanges. Hence,
the difference observed in Bitcoin price. It’s true that if the price on one exchange is
significantly lower than on another, might shift the supply and demand levels and thus
harmonizing the price on different markets. However the problem is that moving money
across exchanges can be inefficient as the cross fees can be exorbitant, especially for small
transactions. Which means, it’s hard for traders to arbitrage differences across exchanges,
that allows the persistence of those price differences longer than that would in a more
efficient market.

2.3 The derivatives market

The derivatives market on cryptocurrencies is exponentially growing as we see a rising open
interest for those contracts’. See fig 2.2.

Crypto options can be traded on the Chicago Mercantile Exchange yet most of the trades
are taken place on unregulated exchanges. The most known Deribit and Binance.

"Open interest is the total number of outstanding contracts that are held by market participants at the
end of each day. Open interest measures the total level of activity into the futures market.
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CHAPTER 2. CRYPTOCURRENCIES MARKET

Deribit options are European with either BTC or ETH as an underlying. The price in
USD is determined by using the latest futures prices. As opposed to standard financial
market where we can find exotic and synthetic derivatives, Crypto derivatives market
contains °

e Regular futures: Contracts consisting of delivering an underlying at an expiry date.

e Non-deliverable forwards: Futures with no physical settlement, settled by the gap
between the spot and forward strike price.

e Perpetual futures (perpetual swaps): are futures that have no expiry date. Traders
can keep an position open without rolling one contract into another. These contracts
are kept in line with the spot rate with a funding-rate mechanism: At any given
interval, a difference is paid or received depending on whether the instrument is
trading above the spot or below.

e Leveraged tokens: Assets that offer a certain exposure to cryptocurrencies. The
leverage can be either fixed or floating (the case of Binance). Similar to leveraged
ETFs’, this type of contracts allows to make big bets without collateral or margin
requirements.

e Options: A retail product that can offer a bullish or bearish exposure by paying the
positive or negative difference between a the underlying and a strike at an expiry
date.

2.3.1 Crypto futures

Selling or buying a futures contract is actually giving a bearish or bullish prediction about
the future price of an asset. Taking a position in a future is the speculation on whether
one thinks the contract will expire above or below the already fixed strike. Bitcoin futures
come with various benefits.

The major interest in futures comes from miners for a hedging purpose. Just like
standard farmers, miners invest an important capital in their production process and have
long term commitments to the blocks mining on the blockchain, in return reaping rewards.

However, the fluctuating price of bitcoin poses a significant problem. the returns of
the mining can be very unpredictable. Therefore, miners have to use futures to protect
themselves as they have fixed running costs and having costs exceeding returns for a long
period of time can lead to their insolvency.

Another interest is that futures offer a low cost of short selling'’. A really low settlement
fee is just paid in advance. For example, Kraken charges 0.05% for fixed maturity contracts.
Expiry of futures is usually 3 months but can go to 6 months or 1 Week.

8(How Derivatives Amp Up Already Heady Crypto Markets, n.d.)

9exchange-traded funds

0They are better than CFDs (contract for differences) because there is no need to pay overnight financing
cost
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CHAPTER 2. CRYPTOCURRENCIES MARKET

The strike price is the price of the futures contract set by the markets. an investor,
thus, have to determine whether the price of Bitcoin will finish above or below the strike.
The strike itself is actually determined on a demand and supply basis and it is the price
that markets believe Bitcoin will be worth at the expiry.

Finally, the major difference between options and futures is that options allow for
market speculation while futures are predominantly used for risk management. Options
also carry low risk compared to futures, since the maximum risk for an option is the
premium paid, whereas the risk in a futures contract is limitless.

Total BTC options open interest history

® Deribit ® LedgerX FIX ® CME @ Okex Huobi ® Bit.com

15B

12B

9B

6B

3B

0B
23 Jun 13 Aug 3 Oct 24 Nov 14 Jan 6 Mar 26 Apr 16 Jun 6 Aug

€ ‘ cointelegraph.com source: Bybt

Figure 2.2: Total bitcoin options open interest

2.4 Market schedule

A major difference between cryptocurrency and other financial markets is the 24-hour
market structure. Investors, therefore, have to think about the daily price change in their
positions through different lenses then the ones they are used to. For instance, taking the
case of the New York Stock Exchange, Market trade during regular market hours''. A
consequence of this is the existence of opening and closing prices. To compute the price
change in a given stock, one subtracts the current price from closing price of the previous
day and then divide the spread by the latter one. Since no such closing time exists for
cryptocurrency markets, the aforementioned method can’t be used. The workaround in
place is to compute the 24-hour price change by comparing the current market price to the
one that was trading the day before at exactly the same time. The problem is that the
denominator, which represents yesterday’s closing price for usual markets and stays the
same all day, keeps changing throughout the day for cryptocurrency.means that if you're

11 After-market hours do exist for these markets but generally the liquidity is thinner and prices execu-
tions are less favorable.
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CHAPTER 2. CRYPTOCURRENCIES MARKET

just looking at the percentage change over the last 24 hours, you can’t tell whether you're
seeing real-time price movement in the cryptocurrency or just residual price volatility from
the day before.

2.5 Liquidity: Spread and volume

In the fast-paced cryptocurrency markets, every quantitative analyst should grasp the
concept of liquidity while studying the market. Liquidity explains how easy a particular
asset can be exchanged without altering the stability of its price. A high liquidity is and
indication of a vibrant and stable market. As a matter of fact, in a sufficiently liquid
market, trades can be executed easily and most importantly at fair prices. Due to the
infancy of cryptocurrencies, the market is considered not liquid. It cannot absorb large
orders without changing the value of its assets. Illiquidity is actually tightly related to
volatility since anyone with a large order can easily disrupt or manipulate cryptocurrency
price.

But how can we measure bitcoins derivatives market liquidity 7 Well to answer that one
must look into two indicators the bid-ask spread and the volume of transactions.

2.5.1 The volume

We can see in fig 2.3 that 50-days average trading volume for bitcoin options is 639 Mil
dollars which represents nothing compared to the S&P500 where the 50-days options av-
erage trading volume exceeds 60 Billion dollars.

Greater trading volume means greater trading activity and is therefore a strong indicator
of a liquid market. Plus a higher volume usually can back up the fact that a price move-
ment is actually a trend and not a noise. Finally an important trading volume makes
price distortion very hard if not impossible and thus the traded prices are the markets’
fair prices. In fact, when sudden spikes are observed in the price, the asset price might be
manipulated by whales due to the limited volume.

2.5.2 The bid-ask spread

In this part we investigate the derivatives market at its microscopic level. The bid-ask
spread is the difference between the price in the order book at which market agents are
willing to sell or buy a derivative. When studying derivatives’ markets, the spread can be
used to identify liquid contracts. Derivatives markets tend to be more fragmented, with
contracts of many expiration dates and strike prices, resulting in a significant number of
very low liquid contracts with wide spreads. As we can see in fig 2.5, the spread for a
call option almost at the money is almost 1300 bp which is considered to be enormous
compared to the For-ex market where the spread of EUR/USD doesn’t exceed 5 bp. Often
quotes in the order book come from market makers. To freshen up one’s memory, market
makers are companies or desks within companies that quote buy and sell prices of financial

Bitcoin’s investments between Fear and Greed 9
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SkeW BTC Options Volumes
by coinbase
$1b
$1b | - E _
$750m{ - - =
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e Deribit Max: $1b, Avg: $599m, Last: $337me LedgerX Max: $9m, Avg: $5m, Last: $4m
o OKEx Max: $28m, Avg: $12m, Last: $12m CME Max: $33m, Avg: $12m, Last: $23m
e bit.com Max: $29m, Avg: $9m, Last: $2m e Binance Max: $4m, Avg: $2m, Last: $18k

Figure 2.3: Total volume of options transactions for BTC

instruments for other market participants, while providing commitment to buy and sell at
the quoted prices. These firms profit from the bid-ask spread to make profit. This distorts
the prices and implies that market users aren’t trading fair prices.

Call Options Index Price: 5009464  2021-09-10

stike

Figure 2.4: Bid-ask prices of a call on BTC

To understand the latter idea let us investigate how spread works. Spread has a deep
fundamental value. In order to demonstrate this, let us try to answer a question: what is a
measurement in finance and how is price measurement performed? If a number represents a
valid security price, then there must be parties in the market willing to transact the security
at that price. In order to test if the price is right, we must submit an order, for example a
BUY order, at a discount price and keep increasing the price until somebody wishes to sell
at our price. Once our order executes, we can say that price has been measured and the
transaction price represents a valid security price. In fact, every transaction in financial
markets is an elementary act of price measurement.

How do we improve price accuracy? If we start with a small order it may not have enough
weight to represent price, so we may want to increase order size. It may work to a certain
extent. However, at some point the order will become so large that it will affect price.
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Other traders will see it and adjust their orders,or our order will execute piercing multiple
levels of order book. Even though the spread may still be low, price itself will become
distorted. Apparently, there is an inherent price uncertainty associated with the nature of
price measurement. That uncertainty cannot be reduced and is directly related to spread.
This quality has been pointed out in to resemble the Heisenberg’s uncertainty principle in
quantum mechanics. For further details see (Sarkissian, 2016).

2.5.3 Transactions fees

The fees for trading bitcoin on Deribit are 7.5bps for Takers and -2.5bps for takers. These
fees seem to be insignificant yet when trading at high frequency or even doing short term
trades for a long period of time might have a cost on the trading strategy. Below is a chart
taken from twitter that shows the performance of trading 1 Bitcoin with executing a buy
at 9am and a sell 11pm UTC. Discarding fees at a first time, counting one taker leg fee at
a second one and counting both taker fees finally.

Buy at 2100 UTC, Sell at 2300 UTC (XBTUSD)

— no_
30 taker_one
—— taker_both

Growth of 1 BTC

Jan Jan Jan Jan
2017 2018 2019 2020

Figure 2.5: Comparaison of trading strategies’ performances with or without trading fees

As we can see, executing taker fee on both legs generates significant performance de-
terioration and turns a profitable strategy into a losing one. This, in a certain way, proves
for short term trading transaction fees should be included in the modelling process. Is it
the case for Bitcoins’ options?

As we can see in the table below there is a difference between taker and maker fees
in order to help provide more liquidity on the market. However for bitcoin and Etherium
options the fees are equal. Which might be among the reasons why we have lower liquidity
in the options market.

Contracts Maker Fee Taker fee
BTC Weekly Futures —0.01% (rebate) 0.05%
BTC/ETH Perps 0.00% 0.05%
BTC/ETH Options | 3bps of the underlying asset | 3bps of the underlying asset
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For Deribit options, the fees can’t get higher than 12.5% of the option’s value or 3bps
or the underlying price. We must say that the fee rarely reaches 12.5% of the option’s
value. As seen for short term trading, transaction fees have a significant impact on the
performance of an investor strategy. However on the long horizon, those fees hardly reach
12.5% and range between 20 and 70bps of the option price. In the modelling process, later
on, we choose not to involve transaction fee in order to simplify the modelling process.

2.6 Noise trading

As opposed to traditional markets, many cryptocurrency traders are inexperienced and new
to the market. The digital currency price may be therefore dominated by the "noise trader”
behavior as described in (Long, Shleifer, Summers & Waldmann, 1990). These investors
have no access to inside and technical analysis market’s information yet they irrationally act
on noise as if it were information that would give them an edge. This is behaviour is spotted
every so often on regular yet highly speculative markets like the Chinese stock markets.
See (Hou, 2013). Although trading bitcoin exhibits a lot of irrational and psychology based
behaviour Bitcoin runs on the blockchain where transactions are recorded and stored in a
distributed ledger. This network produces immense amounts of financial data that we can
use to gain insights into the health and activity of the network.

2.7 Decentralized Finance

Finally, one must mention one of the very innovative aspects of blockchain: Decentralized
markets'?. First of all let’s define Centralized Finance (CeFi) and Decentralized Finance
(DeFi). Kraken, Binance, Coinbase ... are well-known CeFi exchanges that have been
managing crypto related financial transactions. These exchanges monitor and survey all
transactions. The issue is that these platforms are trusted with all users data and money.
Hence, there is always a possibility of data security breach since like any other platform
they are not immune to data leaks or attacks. Defi, however, have a decentralized structure.
Being superbly secure, there is no chance of funds being stolen or misused or vulnerable
to thefts. Decentralized Finance is hosted on a Blockchain platform like Ethereum, smart
contracts are designed to automatically execute transactions when a particular condition is
fulfilled. Since smart contracts are automatic, users can be fully assured that transactions
will never fail and will be properly executed. Some of the biggest examples of Decentralized
Finance (DeFi) exchanges are Kyber, Totle, MakerDAO etc. There is several advantages
for DeFi like the elimination of brokers which results in low trading costs and the accel-
erated trading process. For cryptocurrency traders or any traders for that matter, even a
millisecond delay can lead to huge losses. Appropriate calculation of margins, managing
and hedging risks is very essential for any cryptocurrency trading platform. Blockchain

12( Decentralized Finance, n.d.)
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and smart contracts can help in this regard where smart contracts can automate the entire
process with proper business rules and logic in place.

2.7.1 Decentralized insurance

Decentralized Insurance'

’ is an insurance offer provided for the Decentralized Finance

sector.
This offer extends to different products such as :

e Crypto Wallet Insurance: With the growth of the market comes a growing need for

crypto wallet insurance solutions. Many companies such as Etherisc have developed
protection solutions against crypto wallet theft and hack, covering relatively large
sums.

Collateral Protection for Crypto-backed loans: For Crypto loans, if the collateral
provided by the borrower is attacked, destroyed, or stolen, the loan is repaid by
the insurer. Several companies like Etherisc Sweetbridge, Celsius, Nexo, and Libra
Credit, to cite a few, built an alliance that protects and secures collateralized crypto-
backed loans.

Smart Contract Cover: This insurance policy, developed for instance by Nexus Mu-
tual, covers the potential loss for a designated smart contract. Typically, if the
investor account suffers a loss of funds due to its smart contract’s address being
hacked and manipulated. Or if the funds were transferred to another address, that
does not belong to the original investor and can not be recovered. Thanks to these
policies, investors can lend crypto loans on the exchange without worrying about
losses or repayment

Decentralized insurance is in many ways similar to parametric insurance (automated
execution) but offers more personalized solutions.

13(

Decentralized Insurance — An emerging sector in DeFi, n.d.)
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Chapter 3

Bitcoin market’s modelling: A
marathon of classic models

” All models are wrong, but some are
useful.”

George E. P. Box

3.1 Introduction

In an applied mathematics workshop, Christian Mercat, head of IREM Lyon at the time,
once told me “Modelling is knowing what is important and what is not”. All models by
necessity distort reality in one way or another however they help us simulate and predict
by simplifying the real world.

This reminds me of a situation described by Mandelbrot and Hudson about an engineer, a
physicist, and an economist that find themselves shipwrecked on a desert island with nothing
to eat but a sealed can of beans. How to get at them? The engineer proposes breaking the
can open with a rock. The physicist suggests heating the can in the sun, until it bursts.
The economist’s approach: “First, assume we have a can opener. ...”.

In finance, economists and financial engineers usually apply very strong assumptions to
simplify the mathematics needed to study markets. For instance, as suggests (Kakushadze,
2019), statistical arbitrage might be present in the course of bitcoin yet we choose to go
with the no free lunch assumption. Otherwise, The Fundamental theorem of asset pricing
can no longer be applied and thus no classical model can be used.

In the scope of the next chapter we will try to price vanilla bitcoin options using some of
the most known stochastic models.
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3.2 Black & Scholes

3.2.1 Introduction

The story of option pricing began in 1900 when Louis Bachelier, father of quantitative
finance and an insufficiently recognized genius, came up with the earliest probabilistic
theory known for financial markets as part of his PhD thesis: The theory of Speculation.
His happiest thought was that changes in the stock price follow a random walk process.
Bachelier revealed the vastness of the world dominated by randommess. Following his
dissertation, he came up with a theory of ”probabilities”. It was the theory of what 30
years later became known as Markovian processes. While Bachelier was on the right track,
his model had glaring imperfections. As no discounting was taken into account and prices
were allowed to be negative. Yet, it took more than half a decade to propose any alternative
models. The Black-Scholes model was then introduced and considered as a revolution in
the finance industry as it solved the aforementioned problems.

3.2.2 Definitions and assumptions
Brownian motion

Definition 1 Let be W an F-adapted process with continuous paths where F is the natural
filtration with Wy = 0. Then, we have that W is a Brownian motion if it verifies the
following properties :

o W increments are independent : Wy, — W, L F,
o W increments are stationary : Wy — W, ~ W,_,-

® Wt:N(O,t>

Transaction fees

As discussed in 2.1, the transaction fees are ought to be neglected in the modelling process.
In order to simplify the equations to solve. However a full analysis should be done to
verify the impact of the different costs on long and short term strategies according to their
turnover.

Interest rate

For the sake of simplicity the interest rate used for modelling the Crypto currency free risk
rate is the USD risk free rate (or treasury rate).
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Assumptions
Black-Scholes model assert some strong assumptions:

e Markets are efficient.

e No transaction costs, No transaction volumes restrictions.

No Arbitrage opportunities.

The returns of the underlying are Gaussian, stationary and independent:

s,

S, = pdt + odW,

The investment at the bank is risk-free and the interest rate r is constant

3.2.3 Mathematical model

The underlying processes is modeled over a probability space (Q,F,F,Q), where F =
(Ft)icpo) € F is a filtration satisfying the usual assumptions’ (Fy is assumed to be trivial).

We denote by S, the price of risky securities. S is assumed to be cadlag F-semimartingales.

Let WQ = (WtQ) o be a (F)-Brownian motion. We introduce the coefficient func-
te[0,T

tions p: Ry X R+—= R,0: Ry x R+— R, which are assumed to satisfy standard conditions
ensuring existence and uniqueness of strong solutions of the following SDE:

s,

S
In the Black-Scholes frame p and o are set to be constants. Using the It6 formula to
v(t, Sy) we can deduce the following equation:

= pdt + odW, for p,o >0 (3.1)

v dv 1 0%v v
dU(t, St) = (at 'uStaS 253 852) dt + O'St%dwt

Assume the following portfolio V' = v(¢,S;) — @St. Applying the ito formula we get

v D 1, 0 0%
AV = dv— oodS = (2 4 22520 ) dt
Vi=dvmpste = (at 27 Stasz>

2G2 0% 9%v

. . . 8’!) 1
Therefore V' is a non risky portfolio and we get that (E + 5075795

)dt = rVdt from
which we have the following theorem:

LA filtered probability space is said to satisfy the usual conditions if it is complete (i.e., Fo contains all
P-null sets) and right-continuous (i.e. F; = Fyy :=(),., Fs for all times t)
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Theorem 1 (Black-Scholes PDE). In the Black-Scholes model, the price at date t of a
European option with pay-off g (St) at date T is given by v (t,S;), where the function v is
the solution on [0,T] x (0,00) of the PDE

ov  10% ov
ot T29527 7 T (U - St_) =) o

Using the Feynman-Kac theorem and the Markov property of the process one can see
that:

Theorem 2 Let g be a polynomial growing function, i.e., there exists p such that |g(x)| <
C(1+|z?) for all z. Then the PDE 3.2 admits the unique solution in the class of poly-
nomial growing functions, belonging to C°([0,T] x (0,00)) N C*2([0,T] x (0,00)) given
b
y r
’U(t, S) —E |:€—T‘(T—t)g (SG<T2)(Tt)+0WTt):|

Finally the pricing formula for a call option is:

Theorem 3 (Black-Scholes formula). The price of a European call option with payoff
g(S) = (S — K)* in the Black-Scholes model is given by

v(t,S) := Cgs(t,S) = SN (dy) — Ke "IN (dy) (3.3)

where
ZOQ% + %0'2<T — t)

oVvT —t

and N is the distribution function of the normal distribution:

]. z 22
N(z) = \/_2_7r/ e 2dz

3.2.4 Volatility surface

dio =

In the scope of this section we investigate the implied volatility of bitcoin’s options.
Volatility is a measure of the level of fluctuations in a certain price. How we measure it,
what unit we use, what time scale we are looking at, all of these matters have an impact and
have to be clarified to make a single volatility figure a robust comprehension of how much
that particular stock is fluctuating. Implied volatility is a more market-related concept of
volatility. Taken the market price, implied volatility ensures that the Black-Scholes formula
derived price matches the observed price. The function, o — Cpg(c) which associates the
corresponding Black-Scholes price to a volatility value, and verifies:

1i£101 Cps(o) = (S — Ke”“(T’t))Jr liTm Cps(o) =S

82735 = Sn(d) VT —t>0
g
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Implied Volatility Implied Volatility

0.1

0.05 Exp

(a) Implied volatility surface on 17/08/2021  (b) Implied volatility surface on 30/07/2021

Figure 3.1: Implied volatility surface (Interpolation method is cubic spline)

This implies that the equation Cgg(c) = C has a unique solution for any value of C
satisfying the arbitrage constraints:

(S—Ke ™) <Cc <5

Results

To solve the latter inversion problem two numerical methods were used: The Newton-
Ralphson and bisection methods. Yet Newton-Ralphson algorithm was faster to converge
as it needed no more than 5 to 6 iterations. One can see the different surfaces interpolated
using cubic spline method in fig 3.1.

Interpretation

The interpretation of the volatility surface for bitcoin’s derivative market is a little bit
tricky. We will try to check if we can observe the same stylized facts seen in traditional
markets.

As can be seen in the figures above, the volatility surface for BTC options isn’t constant
both smiles and skews can be spotted.

Asking the question of what causes volatility smile or skew can help us understand the
particularity of this surface:

The smile is due to several reasons. The most important one is probably supply and de-
mand. For instance in the FX market the smile is symmetrical. For example, taking the
case of EUR/USD. Euro investors see the market the opposite way dollar investors observe
it. We can see a shade of this symmetrical behaviour in 3.1 on the 17*" of august. How-
ever, for bitcoin the reason might be a little bit different than that. Since many investors
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use bitcoin options equally for hedging risk and for speculation, they might sometimes be
interested in both ITM? calls and OTM? puts.

Looking at the same figure but on the 30" of July, the volatility surface exhibits a
heavy skew just like the equity market and that is due to the fact that investors have to
protect themselves against large drops specifically buying more protective puts to hedge
that risk. This actually makes sense since Bitcoin price knew a huge drop in the end of July.

For the second data set. The forward volatility skew is fairly apparent. The forward
volatility skew is just a reverse form of the usually observed volatility smirk. To have a
clearer vision of the forward skew, it is a certain form of the surface where OTM calls and
I'TM puts are priced at a much higher implied volatility. This forward skew observed in Bit-
coin options suggests that the demand for buying out-of-the-money calls and in-the-money
puts has increased significantly not only to hedge the Bitcoin price risk yet to speculate
its increase.

Eventually, as the options approach maturity, the implied volatilities rose to more than
180% for some trading day. Therefore, the appropriate interpretation of the increase in
implied volatilities is the demand for these strikes. An additional potential reason for this
forward volatility skew is a notable buying interest in OTM calls, as several investment
institutions are interested in offering their custom products in exchange for cryptos. The
increased interest of institutional investors and cryptocurrency practitioners, among many
other factors, drives upward the Bitcoin price which eventually increases the implied volat-
ility of options with high strikes.

When we move in time and the curve evolves, we can see that the forward skew became
more symmetrical and pronounced several days before expiration. The volatility smile is
the deepest for short-term options near expiration. Movements like these are of tremendous
importance to both speculators and investors, since I believe they suggest that speculators
are more willing to plunge into the Bitcoin market when a volatility smile emerges close
to expiry. In fact, as speculative trades mostly are close to expiry, an increasing interest
is seen for I'TM and OTM options rather than ATM ones. This demand rise yet supply
shortage increases the extrinsic value of options increasing therefore the implied volatility.
This phenomenon is seen in the volatile Bitcoin and cryptocurrency market, as implied
volatility can go up from 60 % to a staggering 200 % in a short period of time (14 trading
days).

By looking at the properties of the bitcoin volatility smile, the existence of forward
volatility skewness resembles the skewness of traditional commodity markets rather than
equity ones. One can conclude that Bitcoin might belong to the commodity class of assets.
This conclusion is actually backed by the Commodity Futures Trading Commission that

2In the money: when the execution price is higher than the price of the underlying asset
30ut of the money: when the exercise price is lower than the price of the underlying asset
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announced that Bitcoin can work as a commodity like gold, silver... and thus can work
as portfolio diversifier and a hedging option as it is not very correlated with other equity
assets.

Conclusion The Black-Scholes model can reveal some properties about Bitcoin’s price:
First of all, this model is not appropriate to capture BTC dynamics as we can see that the
implied volatility surface is not flat.

In addition, the changing surface, suggest the use of a model where the volatility acts upon
a certain dynamics. These two findings, motivate the use of two more complex model like
a jump diffusion and a stochastic volatility model. In section 3 and section 4 we are going
to fit the Merton and Heston stochastic volatility model respectively to see whether they
succeed in capturing the Bitcoin’s price characteristics.
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3.3 Merton model

3.3.1 Introduction

The Black-scholes model was a mixed blessing. On the one hand, the model was superbly
simple and used to price a lot of financial products. On the other one, it failed capturing
the volatility smile and skew. In an attempt to solve this problem (Merton, 1976) in his
paper ”Option Pricing When Underlying Stock Returns Are discontinuous” and (Cox &
Ross, 1976) allowed the stock to exhibit jumps. Transforming the process from a simple
continuous diffusion process to a jump diffusion one. The purpose of his paper was to
make the Black-Scholes model more realistic and able to deal with the fact that empirical
studies of market returns show that returns do not follow a constant variance log-normal
distribution. The Merton model, properly calibrated to the market data, has been success-
ful in producing skews in volatility. For example, short-term skews can be captured when
introducing a negative mean for the jump process.

3.3.2 The Mathematical model
Poisson process

Definition 2 A poisson process with intensity \ is an occurrence counting process (non-
negative, integer-valued, increasing cadlag stochastic process) that verifies these conditions:
1. Vty =0 <t < .. <t the variables (Ny, — Ny,_,),...(Nyy, — Ny,) are independants.

2. P(Nyyp, — Ny = 1) = A+ o(h) when h — 07,

3. P(Nyyn — Ny > 1) = o(h) when h — 0"

therefore P(Niyp, — Ny = 0) =1 — Ah + o(h) when h — 0%.

Compound poisson process

Definition 3 A compound poisson process is defined as:

Q=) 1 (3.4)

The process Ny is a Poisson process and the sequence of random variables J; are assumed
to be independent. A jump at time t is therefore J;*dN; Where dNy is a Bernouilli random
variable according to 2

Assumptions For this model we use:
e The same interest rate as the Black-Scholes model.

e We assume that there is no arbitrage opportunities.
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e No transaction costs, No transaction volumes restrictions
e The jumps to be independent from the diffusion process.

e That the jumps are independent from one another.

The mathematical model

The dynamics of the price process is given by:

{ dXt = ,udt + O'th + JdNt
h(X:) = exp (X¢) = S,

where o and p are constants and the jump sizes are normal Vi, J; ~ A (m, %). Therefore let
be Q; = vaztl J;, a compound Poisson process describing the jump process. Following (El-
Himdi, 2020) work at Mazars Actuariat and using the It6 formula for jump and diffusion
processes. We find that:

2

dS; = <M + %) Sidt + oS dWy + Sp- (eJi — 1)dN,

Let be M, = Zf\il (e‘]'i — 1) —AE (e‘]i — 1) t is a martingale representing the centred jump

process (At is the expectation of the Poisson process and A is the jumps occurrence intens-
ity). Therefore:

2
Where k = em+§ — 1 and. Using the risk-neutral probability Q Eq. 3.5 becomes

dS, = rS,dt + 0 S,dW2 + S,-dM2
where WtQ =W, +6,, and 0, = w Thus,

dS, = (r — \k)S,dt + 08, dWR + S,- (Y — 1)dN,

and the price process is therefore

Nt
S; = Spexp <(r —0?)2 — )\k:) t+ O'thQ + Z Ji>
i=1
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Using Markov property, we can deduce the option price:
c(t,T,K,S;) =e " TIE (St — K),) | S =S]
— e_T(T_t)E |:1/] (Se((T— o2 )\k)(T t)+0—WQ t+ZNT tj):|

_ efr(Tft) Z Q (Nt _ n) E [w <S€(r7”—227)\k)(Tft)+0W$7t+z? JZ):|
n=0

— (T Ze—)\(T—t) ()\(T : )) |:¢ (86 r———kk (T—t +nm+\/02+"52 t):|
n:

n=0
oo

_ —r(T-t) —A\(T—t) (A(T_t))n 2 )T— Ak‘r+—‘r+nm+ 02+#W9
=e Z e —n! | Selr=3
n=0
Therefore the price of a call option is:
S —1)"
(t T K St Z e —|Cbs (7—7 Sn,t7 Un)
n=0 ’

. . . 2 104
where 1 is an integrable measurable function, 7 = T —t,S,, = SeVn+nd"/2=A1 52 _

0%+ ”7‘52 and ¢4 is the BS call option price.

3.3.3 Model calibration

In order for the model prices to fit the market, its parameters should be calibrated. Among
the advantages of this model, is that it gives us closed formulas that can be relatively easy
to calibrate. The optimization problem that we have to solve is the following:

min f(0) (3.6)

OcR?

where f(0) :=1[|r(0)]|* = 1r"(0)r(0) and r(0) := [r1(6), ... ,7(0)]" and finally

2
ri(0):=c(0;K;,T;) — " (K;,T;), i=1,...,n

We have that C* the market price and C' the model price depending on the parameters’
vector 0 := [\, 0,9, m]T of size b = 4. And given the following bounds:

0<o <@
O<m<2
0<d<oo
0<A<10

The algorithm used to solve this problem is the Sequential Least Squared Quadratic Pro-
gramming (SLSQP) developed by (Kraft, 1988) already implemented in Python’s package

scipy
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Figure 3.2: Price slices on the 17th August

Results

As we can see the Merton jump diffusion model was able to price the vanilla options with
a relative mean squared error of 14.89 %. The results of the calibration process yielded
these parameters.

A o 5 m
5.020 | 0.607 | 0.042 | 1.914

When compared to the Black-Scholes model The Merton model was able to reproduce in
a way the volatility smile as we see in 3.3. The strength of jump diffusion processes is that
it fits short-term skews. The skew for a given stock is greater for short-term maturities
than for long-term maturities. For long maturities, the skew might have a higher level, but
the skew in the short term options is more pronounced. As a matter of fact, the skew is
present because traders and investors are generally concerned about losing money in case
the market becomes volatile and goes down. Finally, one should mention that the larger I"
the more problematic it is. Short-term options with low strikes have larger I's so whenever
the underlying price decreases, the skew is steeper. And, here comes the effect of adding
jumps in the underlying’s dynamics, as a jump would have a tremendous impact on the
price of an option because for the short term the market may not have time to be back to
normal from a certain sudden variation.

Conclusion

The Merton model was able to reproduce in a way the volatility smile. Using a jump
process helped with fitting short-term skews. The skew for a given stock is greater for
short-term maturities than for long-term maturities. However, clearly, the Merton model
cannot capture the changing dynamics of the volatility process. In the following section,
we take advantage of the Heston stochastic volatility model.
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Figure 3.3: Volatility smile

Remark As a matter of fact, since Deribit and most other exchanges only offer vanilla
options, we could have used a local volatility model that will be able to, perfectly reproduce
the volatility surface. However, we chose to use parametric models in order for us to better
understand the properties of the Bitcoin derivatives’ market.
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3.4 Stochastic volatility

3.4.1 Introduction

As discussed in the latter section a stochastic volatility model is needed to capture more
information about the cryptocurrency dynamics that cannot be captured by other models.
One can also see from 3.1 that the volatility surface changes dynamically which arises
a risk that should be captured by the model. To do so, we chose the Heston model as
it is considered to be the bedrock on which lies all stochastic volatilises models. This
model provides a closed-form solution for European Call options, that can be very useful
in the calibration process. It also allows the underlying price process to follow a non
log-Normal probability distribution and ensures the mean-reverting stylized fact of the
volatility process therefore fits fairly well the market implied volatility surface. Finally, we
can put into account the correlation of price and volatility using this model.

3.4.2 The mathematical model
Assumptions

For this model we use:
e The same interest rate as the Black-Scholes model.
e We assume that there is no arbitrage opportunities.

e No transaction costs, No transaction volumes restrictions

The volatility follows a mean reversion process

Both the risk factor of volatility and price process are constantly correlated.

The model

The underlying processes (S, V;) is modeled over a probability space (2, F,F,Q), where
F = (Fi)icjor) € F is afiltration satisfying the usual assumptions.

Let S; be the the price process and V; be the volatility process. The dynamics of the
Heston model are described as follows.

dS, = pSydt + VS dW®
AV, = k (0 — V) dt + o/VedW"" (3.7)
(W W) = pat

Looking at the equations above we can spot that the diffusion coefficient is positive (square
root of an entity) which results in the non negativity of the variance. When invetigating
historical data, we can easily see that volatility is not static and it varies over time. Volat-
ility actually seems to oscillate around a long-term mean level. That’s why it is modeled
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using a square root mean-reverting process. A shadow of this can be seen in interest rates’
term structure modelling by Cox, Ingersoll and Ross. See the T3Index’s bitvol which is
made to resemble the VIX index of the S&P 500 fig 3.4

BTC ETH

Last: 93.32 Chg:-0.37 (-0.39%)

Last updated: Fri Sep 10 2021
Bitvol® =

Bitcoin Volatility Index

Figure 3.4: Bitcoin volatility index, source: T3Index.

The drift term in the volatility dynamics is mean reverting if x > 0, with v being the
long-term mean level of the variance. In fact, if at time ¢ the process V; is greater than 6,
the drift term will push the process value down.

3.4.3 Calibration of the model

The calibration of the Heston model is trickier than the other models. First of all there
are 5 paramaters that need to be calibrated and the objective function is not known to be
convex. A complexity is added later on due to the dependency of some parameters. As a
matter of fact o and k offset each other. That’s might be due to the fact that the objective
function is flat reaching the optimum.

Like the other models we will try to minimise the spread between a vanilla option’s price
and the one found on the market. The objective function is no different then other classic
optimization problems:

min f(6) (3.8)

OcR™

where f(0) := 3[|r()]|* = ir7(8)r(0) and r(0) := [r1(6),. .. ,7(0)]" and finally

We have that C* the market price and C' the model price depending on the parameters’
vector 6 := [vg, T, p, K, O']T of size m = 5. Since the, the explicit gradient of C' with respect
to 6 is deemed to be overly complicated. We will use the (del Bano Rollin, Ferreiro-
Castilla & Utzet, 2010) formulation used by (Cui, del Bano Rollin & Germano, 2016) in
his calibration process of the Heston process.
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The pricing formula of a call in the Heston model was given by the original auther as:

C(0: K,T) =} (So— e "TK) + < | [" Re (5600 — i, T) ) du
—K [ Re ( e K (9, T)) du}

Where ¢ is the logarithmic price characteristic function.

dt

»(0;u,t) = exp {zu (log So + rt) + [(5 +d)t — 2log ﬂ
T (E+ DTG

1—giedt

Where

=Kk —opiu

d =/ + 0% (u? + iu)
£+d
E—d
The problem of this original formulation is that for relatively long maturities discontinuities
appear because of the branch switching of the complex power function which appears in
the characteristic function. See (Cui et al., 2016) for further details about this problem. To

calibrate the model we use their characteristic function formulation as they proved it solved
the discontinuity problem rather than that its analytical gradient is easy to compute.

g1 =

. 9

»(0;u,t) = exp { (log Sp +1t) — tm;pzu —vpA + m)D} (3.9)

Where,
t
D =logd + % — log As
—d)t d d—
= logd + (r 5 ) — log ( —;—5 5 gedt> =:logB

and

dt dt dt d d—
logA2:10g<dcosh—+§s h2> ———i—log( +§ 5edt>

The gradient of the price function is:

VOO K,T) = < | [*Re (55°V6(05u—i,T) ) du

—K [ Re <Kl;u Vo(0;u, T)> du}
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where V¢(0;u, T) = ¢(0;u, T)h(u), h(u) := [hy(u), hao(u), ..., hs(u)]" with elements

hl(u) =-A
2K tkpiu
hg(u) = ﬁD — o
() = — 8A+2m7 8d_ d 0As _tm’)z'u
3= UO@p o2d \dp As Op o
vy OA 20 2k0 OB topiu
) = e, TR T oo T .

o2

0A  4kv 260 (0d  d 0A tkUpiu
h5<“>:—”03—0—?9+@<a—0—11—2 aa)+

To make the calibration process more efficient, (Cui et al., 2016) tried to optimise the com-
putation of the integrands in the equation 3.9. Due to the fact that functions of the form
Re (¢(0;u, t) K~/ (iu)) are smooth and decay rapidly: The more spread out the function
is the more localised its Fourier transformation (The uncertainty principle). As a mat-
ter of fact when 7' increases St probability function widens out and therefore its Fourier
transformation squeezes. Based on this property, one can adjust the truncation according
to the maturity of the option and hence do fewer integrand evaluations for options with
longer maturities.

The integration scheme used in the computation is the Gauss-Legendre as (Cui et al., 2016)
showed it’s absolute efficiency compared to other schemes.

Finally, to solve the optimization problem we used the Levenberg-Marquardt. The LM
method is a typical tool to solve a nonlinear least squares problem, The search step is given
by:

A9 = (JIT +ul) VS

By adjusting p, the method changes between the gradient descent method and the Gauss-
Newton method: when the iterate is far from the optimum, u is given a large value so
that the Hessian matrix is dominated by the scaled identity matrix VV ' f ~ uI and when
we are close to the optimum g is small enough that Hessian matrix is dominated by the
Gauss-Newton algorithm VV' f ~ JJ'.

The algorithm shall stop iterating as soon as ||r (0)|| < €1, ||Jrell, < eg or % <egis
satisfied.

3.4.4 Results

Ability of the model to capture forward skew When changing the model correla-
tion’s parameter we can see that the density skew is captured. Good thing is the Heston
model gives us the ability to capture a forward skew by picking a positive correlation
between the price and the volatility. As we have seen in fig 3.1 the implied volatility
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Figure 3.5: Effect of the correlation between price and volatility

surface exhibits a forward skew” just like in the commodity market.

3.4.5 Calibration results

The calibration process yields the following parameters

Date Vo v p K o
30/07/2021 | 2.8686 | 1.414 | 0.7848 | 3.52158 | 1.94371
18/08/2021 | 2.3031 | 1.524 | 0.31635 | 2.1849 | 1.7041
28/09/2021 | 0.6917 | 0.7896 | 0.08932 | 0.8674 | 0.4254

Interpretation

We can see that an increase of v corresponds to an increase of the variance and consequently
an upward translation of the volatility smile. o is the volatility of variance o, and it controls
the kurtosis of the distribution and thus affects the implied volatility. The Heston model
has the ability to imitate the volatility smile observed in the market: A larger o, therefore,
implies a more pronounced smile. To better explain this, when the volatility of volatility
rises the probability of extreme price changes increases and increases the OTM options
price. We can see this feature in fig 3.1.

k can be seen as the speed of the mean reversion of the volatility. In other words, it
indicates the degree of volatility clustering.

It might be seem that the impact of the mean-reversion speed on option prices is re-
stricted. However, its effect appears to be different when options are deeply I'TM or deeply
OTM. This is closely related to the fact that increasing the speed of the mean reversion of
the variance decreases the probability of extreme movements. As a result, when an option
is deeply OTM, increasing x decreases the probability that the option will finish ITM at
maturity, therefore decreasing its price. By the same way, when an option is deeply ITM,
increasing k increases the likelihood of the option finishing ITM, therefore increasing its

4See appendix for further details on forward skew
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Heston Implied Volatility Heston Implied Volatility Error
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(a) Heston Implied volatility surface (b) Heston Implied volatility surface error

Figure 3.6: Heston Implied volatility surface (on 30/07/2021)

price.

Finally looking at the correlation between stock price and volatility, we can see that, as
opposed to many empirical studies that have documented a negative correlation between
the stock price and volatility processes (Black, 1976). In the case of bitcoin the correl-
ation parameter p is positive. Taking the example of equity markets, when prices of a
certain stock declines the leverage that firms have is usually inflated. This results in more
uncertainty about the market and therefore a higher volatility. The latter phenomenon
is controlled by the correlation parameter in the Heston model. As showed in 3.4.4 this
impacts the the skewness of return distribution. For instance a negative correlation means
a relatively thicker left tail. Accordingly, the skewness affects the shape of the volatil-
ity surface and adds a downward slopinng curve meaning a higher price of deep OTM
puts. For the case of bitcoin and some crypto currencies a higher deep OTM calls used for
speculation. Hence, the forward skew and the positive correlation parameter.

3.4.6 Pricing results

We used the model to price our options, overall the Heston model performed better than
the ones before it. The relative mean squared error of the stochastic volatility model is
11.84% for July the 30" and 9.76% for August the 18

Using the Heston prices we derived the implied volatility surface in fig 3.6. First of all we
can see that the stochastic volatility model reproduces the volatility smile. When plot-
ting the volatility surface error we notice that the error comes from short term options.
Stochastic volatility models also have limitations as they have difficulties in matching the
short and long maturity skew or both ends of the volatility surface at the same time.
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To solve this problem one can add jumps. As we have seen in section 8.3.2 jumps are
fairly capable of the explaining the short term skew. As a matter of fact, the explanation of
the strong short-term skew is related to the jumps. However when adding jumps, we don’t
generally affect the long-term skews that stays relatively flat. We can actually conclude
that the long-term skew is not driven by the stock price jumps.

3.4.7 The use of stochastic volatility models

We might not need stochastic volatility models full potential with only vanilla options
available in the market right now but with the flourishing market of cryptocurrency more
complex derivatives will be traded in the future on different exchanges. Stochastic volatility
models, actually, go beyond modelling the skew to allowing the vega convexity and forward
skew feature. Therefore, they are capable to price products that exhibit vega convexity or
forward skew. These contracts are sensitive to volatility is a non-linear way, meaning that
their volga greek ( the second-order derivative to volatility) is not null. We can also see a
shadow of this feature in vanilla options as they are also convex in volatility, especially OTM
options. Yet a Stochastic volatility model is not needed as the risk of vega convexity can
be hedged by hedging the skew. Since they are liquidly traded, a Black-Scholes model with
market implied volatility should be enough to fairly price them. The way the Heston model,
for example, captures Vega convexity in complex payoffs is by the sigma parameter which
represents the volatility of volatility. Finally, a really important advantage of this model’s
type is that it can generate forward skews and therefore efficient in pricing derivatives
exhibiting this feature like forward starting and cliquet options which are really popular
in commodities market and therefore might be launched later on for cryptocurrency. The
way these models do this is by capturing the smile dynamics® since the volatility has its
own stochastic dynamics.

Conclusion

The stochastic volatility model reproduces the volatility smile. However, the error of this
surface comes from short maturities. The Heston model have limitations as they have
difficulties in matching the short and long maturity skew or both ends of the volatility
surface at the same time. The next step is to add both jumps and stochastic volatility
to our model. Therefore we use a stochastic volatility with correlated jumps in the next
section.

5The phenomena of how the skew changes as the the stock prices changes
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3.5 Stochastic volatility with co-jumps

Introduction In the scope of this part we investigate an even more flexible model. Unlike
the stochastic volatility model this one can incorporate some of the irregularity of BTC
related to jumps seen in its price chart. We decided to get use of both Merton’s and
Heston’s strengths by implementing the stochastic volatility with correlated jumps model
of Duffie, Pan and Singleton that adds correlated jumps to both the price and volatility
process.

3.5.1 The mathematical model
Assumptions

For this model we use:
e The interest rate is constant.
e We assume that there is no arbitrage opportunities.
e No transaction costs, No transaction volumes restrictions

Both diffusion are correlated.

That the jumps are independent from one another and come at a constant rate.

e Jumps generated in the price and volatility processes are correlated.

The model

The underlying processes (S;, Vi, IV;) is modeled over a probability space (€2, F, F,Q), where
F= (]:t)te[o,T] C F is a filtration satisfying the usual assumptions.
Let S; be the price process and V; the volatility one, the SVCJ dynamics are as follows:

dlog S; = pdt + /V,dW,*) + ZVdN,
AV, = k(0 — V;) dt + o/ VidW") + ZvdN,
d <W§S), Wt(V)> — pdt
P(dN, = 1) = \dt

(3.10)

Like the Heston model, k,v denote the mean reversion rate and the mean reversion level,
o is the volvol capturing the variance responsiveness to diffusive volatility in shocks and
p is the correlation between the diffusion of the price and volatility used to capture the
leverage effect.
N, is a counting process with a constant mean arrival rate A. The random jump sizes are
Zp, Z}. The random jump size Z; conditional on Z; is

Zy | Z ~ Ny + 02 0y) 0 Zf ~ exp ()

]
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3.5.2 Calibration of the model
MCMC® methods

It has been proven that MCMC methods are of great use when it comes to calibrating
SV models. This is not just because Markov chain based algorithms are efficient in terms
of computation yet they are flexible methods and therefore can estimate with high precision
jump sizes and times and volatility.

MCMC methods that can be applied in more general cases like nonlinear and non-
Gaussian models. These algorithms’ perk is that it generates the distribution of both state
variables and parameters knowing apriori data. This allows for a wide class of numerical
fitting procedures that can be guided by a variation of the priors. Among the fundamental
theorems used is the Clifford Hammersley theorem. It states that a joint distribution can
be characterized by its complete conditional distributions:

PO,X|Y)=PY |6, X)P(X|O)PO) (3.11)
The MCMC method creates a Markov chain over couple (0, X): given the initial draws
X© and 0O the g-th draws are produced through iteration as:
X@ ~p (X | oY), y)
0¥ ~p (@ | X(g),Y)

The sequence of random variables {6(9), X (9)}521 obtained is a Markov chain, whose dis-

tribution converges to p(©, X | Y). The MCMC method is implemented through the use
of various algorithms like the Metropolis-Hastings algorithm. A candidate draw is drawn
from a chosen probability density and accepted or rejected using a certain criterion. The
criteria is selected in order to produce random samples shaping a Markov chain with the
proper equilibrium distribution.

Given the sample {@(9),X (g)}le from the joint posterior, parameter and state variable

estimation can be performed with Monte Carlo method. If f(©, X) is a function satisfying
technical regularity conditions, the Monte Carlo estimates

G
E[f(0,X)|Y] = /f(@,X)p(@,X | Y)dXdO ~ éZf(@@,X(g))

We can, in addition, analyse two types of convergence for G — oo :

e The convergence of the distribution of the Markov chain to p(©, X | Y).

e The convergence of the partial sums

G
é S (0@, x@)
g=1

6Markov chain Monte Carlo
"Stochastic volatility
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to the conditional expectation E[f(©,X) | Y]. Both types of convergence are guar-
anteed by the Ergodic Theorem for Markov Chains, since MCMC algorithm verifies
the statement’s holding conditions.

The MCMC algorithms used are explained in details in Appendix A.

SVCJ Calibration
The equity price, S, and its stochastic variance, V;, jointly solve

Ny(P)

dS, = S, (v, +n, Vi) dt + S,/ VidW(P) + d ZS (4 1)

AV; = ky (0= V;) dt + o/ Vi dWF (P) + d Z Zy(P

where W7 (P) and WP (P) are correlated Brownian motions, corr (Wg(P), W/ (P)) = p,
Ny(P) ~ Poisson()), 7; are the jump times, Z$(P) | Z¥ ~ N (s + psZ7,072) are the return

jr%s
jumps, Z7(P) ~ exp (u,) are the volatility jumps, and 7; is the spot interest rate.

The MCMC estimation scheme uses the Euler discretization:
Y;f = U+ ‘/2_15% + ZéUJt
Vi=a+ Vi +ov/Viiel + 27,

e Where Y, 1 = log (S11/S;) is the log return, « = kv, 8 = 1 —k and &7, &? are N(0, 1)
with p correlation.

e J; is the jump Bernoulli variable that represents the occurrence of jumps generated
by the poisson process such as P(J; = 1) = X in other terms P(J; = 155 € [¢,t+dt]) =
P<Nt+dt - Nt — 1) — )\dt

We define the parameter vector:

O = {,u,,uy,ay, )‘7017670-7 P pjuuv}

X ={V;, Z{, Z?, J;} being the chain at time t, composed of the latent variance, jump sizes
and jump occurrence respectively.

Following (Hou, Wang, Chen & Hérdle, 2020), the prior of parameters are chosen as
follows:

A ~ Be(2,40) o2 ~ IQ( .5,0.1)
N(0,25) (0, 100)
U ~ 7G(10,40) U(l, 1)
2y~ N(0.03) o~ ZG(10,20)
( ) (02><17[2><2)
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Parameters | Mean St. deviation

7 0.2162 | 0.3293
1y 0.0521 | 0.2346
y 24068 | 0.0974

ag

) 0.1126 | 0.1933
a 0.0188 | 0.1946
3 20.2524 | 0.1159
p

g

0.5432 | 0.05791
0.0439 | 0.0790
0; -0.6430 | 0.1214
1 0.9429 | 0.2130

Table 3.1: Estimated parameters of the SVCJ model using MCMC

Be and ZG are the Beta Distribution and the Inverse Gaussian.

The posterior mean estimating © is really robust to different changes in variance of the
prior distributions. One must say that the posterior for all parameters except o and p are
conjugate®. Therefore, we can see that posterior for the jump sizes posterior law are a
normal distribution for Z/ and a truncated normal distribution for Z;. The posterior law
for J; is a Bernoulli distribution. However for p,o? and V; the posteriors are nonstand-
ard distributions. That is why sampling for these parameters should be done using the
Metropolis-Hastings algorithm. We use independence sampling for o? and random-walk
method for p and V;. The algorithms need 5000 iterations in order to estimate posteriors
distributions (In our case we need only the first two moments). To decrease the impact of
the starting value we neglect the first 1000 iterations. These non considered iterations are
called the burn-in.

The Stochastic Volatility model with Correlated Jumps can reproduce unexpected
jumps occurring due to periods of high volatility. This periods of high volatility and
jumps are usually caused by events happening in the financial market or news destabil-
izing the cryptocurrency one. A jump is considered to be occurred at ¢ if the estimated
jump probability is sufficiently large exceeding a certain threshold (,

J>¢ t=1,2,...,T
where J; dof % Zfil J! is an estimation indicating the posterior probability of the occur-
rence of a jump at time ¢. ( is chosen empirically so that the number of inferred jump
times divided by the number of observations is approximately equal to the estimate of .

3.5.3 Calibration results

The calibration process yielded the parameters in table 3.1: The estimate of u is positive.

8Being conjugate is having the same density function yet with different parameters
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The correlation between returns and volatility p is significant and positive. The positive
correlation can also be related to the noise trading feature explained in the first chapter.
Because the BTC market is highly unregulated but also due to the fact that the BT C price
is driven by emotion and sentiment, the speculative behaviour can be explained by the
"noise trader” theory. The positive relation might result from the fact that BTC investors
irrationally act on noise as if it were information that would give them an edge. We can
see also that the mean of the jump size of the volatility u, is significant and positive. The
jump intensity is also significant. In summary, the SVCJ model fits the data well and the
significance of the jump parameters relatively explains the need of this model.

3.5.4 Pricing cryptocurrency options

The pricing of the cryptocurrency vanilla options is done using Crude Monte Carlo simu-
lations” using:
EQ [e T 0C(T) | Fi]

As expected the SVCJ model outperformed the previous models with an RMSE of 8.12 %.
We were able to reproduce the SVCJ volatility surface in fig 3.8

We can see that this model represents well the volatility surface plus we can observe thanks
to the error surface that we relatively solved the short-term skew fitting problem of the
Heston model.
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Figure 3.7: Monte Carlo simulations of the price process

Martingale hypothesis testing

Since the pricing of options is done using Monte Carlo, under the risk neutral probability
the process should be a martingale. To ensure that the pricing is done correctly, a martin-

9see appendix B
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SVCI Implied Volatility SVC] Implied Volatility Error

(a) SVCJ Implied volatility surface (b) SVCJ Implied volatility surface error

Figure 3.8: SVCJ Implied volatility surface (on 30/07/2021)

gale test could be executed to verify the latter hypothesis.

The test Let a time series (y;) be given, and let (F;) be a filtration to which (y;) is
adapted. The null hypothesis of interest is that (y;) is a martingale process with respect
to the filtration (F;), i.e

Hy:P(E(y: | Fi1) =y—1) =1

for each ¢ > 1, where E (- | F;_1) denotes as usual the conditional expectation given F;_;.
Since the process is Markovian E (y; | Fi—1) = E (y¢ | y1—1). Using,

E(Ay | yi—1) =0 as. iff EAyl{y,—1 <z} =0 for almost all z € R

the basis of the test statistics for the martingale hypothesis,

Qn(z) = % gAytl {yi—1 < zx}.

The test statistic, therefore, considered is Kolmogorov-Smirnov one:

Sy = sup |Q,(z)].
zeR

Asymptotic Critical Values of S, (Park &W hang,2004)

sig. level (a) | 0.99 095 0.90 0.10 0.05 0.01
Sh 0.612 0.765 0.865 2.119 2.388 2.911

The value of the statistic computed is 0.724 wich indicates the martingality of the
process with 95% confidence level.
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3.5.5 The impact of jumps in volatility and returns

Some of the impacts are similar to other standard markets. See (Eraker, Johannes
& Polson, 2003). As we stated in the previous section, stochastic volatility models are
efficient when it comes to long maturities as they can reproduce the implied volatility in
a realistic way without having to excessively re-calibrate parameters. However this is not
true for short maturities As seen in the Merton model, this problem is not so relevant.
Therefore, adding jumps in returns to stochastic volatility models allows to calibrate the
implied volatility surface across different strikes and maturities using parameters without
an explicit time dependence.

The increments of the price process being not totally independent results actually in
sufficiently time-stable calibration parameters; The parameters being time-stable is actu-
ally very useful since this way forward smiles can be estimated without being influenced
by present smile.

Adding Jumps to the price process (return process) helps explain empirically explain
a relevant portion of the total variance since they represent rare events of large sizes. The
jump sizes are actually temporary in contrast to volatility jumps that lean to persistent
and rapid shocks in the conditional volatility of returns as they are driven by a Brownian
motion. Computing these jumps contributions can help us hedging jump risk by estimating
appropriate premiums in the time of stressed markets.

As discussed before, jumps of volatility are instantaneous on the volatility process itself
yet persistent on the returns process that is due to the property of mean-reversion of the
volatility process that make it mean-revert back to its long-run level. Yet the effect on
the price process is usually long lasting. In periods of market stress the contribution of
both jump processes cannot be ignored as they are important in the determination of
risk premiums. Those jumps are usually incisive than diffusion processes to produce large
movements observed in financial crashes.

Finally these jumps help shape the volatility surface as they make its slope curve
steeper. Volatility jumps help incline volatility for ITM options and make the slope even
steeper.

Conclusion

The SVCJ model performed well compared to the previous ones. All the parameters that we
calibrated turned out to be statistically significant which justifies the use of both volatility
and price jumps and the stochastic nature of the volatility process. A fractal analysis is
conducted in the next chapter to see whether we ought to use rough volatility model to
better understand the bitcoin behaviour.

Bitcoin’s investments between Fear and Greed 39



Chapter 4

Bitcoin market’s modelling: A fractal
market

“A fractal is a way of seeing infinity.”

Benoit Mandelbrot

4.1 Introduction

Rough models aren’t rough.

The variation of a Brownian motion is infinite. This means that a Brownian motion can
oscillate so fast in a short period of time that his variations in a finite time interval tends to
infinity. A Brownian motion’s derivative over time is infinite in every single point. Meaning
that if we know the path we would never know it’s momentum' yet if we know it’s law of
transition which is analogous to its momentum we can not know it’s position: Heisenberg’s
uncertainty principle hits again.

I was actually dazzled by a saying of my stochastic calculus professor “The essence of Ito
calculus is that space is the square root of time”. Studying financial markets on a macro-
scopic or microscopic scale is all about the trading time. Time is not an absolute truth.
There isn’t a supreme clock ticking for the whole universe. Time actually depends on the
reference and on the scale of events. Bachelier was actually a maverick when describing
the price process as a Brownian motion. As he implied by that that financial market are
random and therefore cannot be modeled as a deterministic function of a constant time.
Actually there is a lot happening in the financial market as every single agent is affecting
the prices on an atomic scale that actually for the price process point of view the clock
ticks slower and a lot can happen in a minor time interval.

lif we fix w the brownian motion’s "speed” is simlply its differential with respect to time which is
infinite. If we don’t know it’s position means w is variable we know the law of it’s increments yet we don’t
know it’s trajectory
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It wasn’t until the black monday that we realised Bachelier and his colleges missed some-
thing too. The trading time is not always constant sometimes the market is calm: nothing
is happening. Other times, in a case of market turbulence everything can be chaotic and
everything is possible including a market crash. In this case, even the slower time rate of
the Brownian motion is not sufficient to reproduce the markets turbulent state. Therefore
another process or another more general definition of time is needed: The multi-fractal
time. To better explain this idea, I must cite the following passage of Benoit Mandelbrot’s
book The Misbehavior of Markets: A Fractal View of Financial Turbulence

“On occasion, trading is fast. Scores of news ,items are flitting across the
electronic “crawl” on the bottom of the screen. Colleagues are waving and
shouting all around. Phones are ringing. Customers are zapping electronic
orders. The volume of trades is climbing, and prices are flying by. On such
days are fortunes won or lost. Time flies. Then there are the slow times. No
news, only tired reports from the in-house financial analysts to chew over. The
customers seem to be on holiday. Trading is thin. Prices are quiet. No big
money to be made here; might as well go for a long lunch. Time hangs heavy.

Wi

The fractional Brownian motion is not just a rougher stochastic processes yet it’s a more
general approach that makes them fit reality in every single scale and time. The rough
models aren’t just rough, they are rich enough to incorporate every state of the market.

This chapter was motivated by the work of Takaishi and Celeste, Corbet and Gurdgiev

4.2 Cryptocurrency and the fractal market hypothesis
(FMH)

The Efficient market hypothesis (EMH) was developed through the pioneering work of
Osborne (1959) who empirically showed that stock prices follow a random walk. EMH im-
plies that the price process reflects all available information and therefore it is impossible
for markets participants to consistently outperform the market on risk adjusted basis. Al-
though a lot of today’s models are based on EMH, empirically observed properties of the
financial markets, show that this theory is far from being valid.

In his book, Peters outlined a new theory based on empirical studies of the different
markets: The fractal market hypothesis (FMH). This theory states that the market con-
tains many investors with different investment horizons. Therefore the trading activity
of them is based on different information sets. For instance, investors with longer-term
horizons base their decisions on fundamental information, yet shorter-term ones rely on
technical aspects. This fractal structure helps maintaining the stability of the market since
each investment horizon provides liquidity to the other and thus fair prices are traded. Dur-
ing turbulent times, long-term investors begin lose confidence in their information, their
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investment horizon shortens, and thus the overall investment horizon of the market loses
its structure. The market, thus, becomes unstable because trading is based on the same
information set, interpreted in the same way. Trading is therefore based on exogenous
information like the news : Good news, for example, raises confidence in a certain stock or
index which drives the price upwards. This uniform nature of investment horizons causes
liquidity to dry up and therefore volatility to increase, because most of the trading is on
one side. Volatility being important, more short term investors are driven to the market
which causes this time horizon to be even more dominant. Hence the self exciting character
described in Zipf’s work. Ultimately, the long term gains certainty and the market returns
to stability as investment horizons widen and diversify. In this section, we will try to prove
the existence of this fractal behaviour in cryptocurrency markets, we will use the Bitcoin
price evolution? as long as the 5 last years daily historical volatility®, for our empirical
study.

4.2.1 Evidence of cryptocurrencies fractal behaviour

During times of low uncertainty, markets will follow the assumptions of the EMH with
Gaussian distributions and finite variance statistics. When uncertainty increases, markets
exhibit fat-tailed risks and unstable variance. In order to capture and prove these fractal
dynamics we investigated several aspects of the multifractal analysis.

Among the most relevant properties of Mandelbrot’s fractal geometry, the self-similarity
and fractal dimension: In presence of fractal dynamics, each scale looks similar but not
identical to the others, making data scale invariant or self-similar.

In the usual Euclidean geometry, objects’ dimension, namely how an object fill its space
are integers whereas the dimension of a fractal object is fractal. Fractal objects are actually
infinite in a finite portion of the higher dimension so they actually fill even more than the
space they are in but not enough to actually be an object in a higher dimension. That’s why
we consider a brownian motion to have an infinite variation yet it is still a one dimensional
curve not a two dimensional object.

Clearly to measure an object dimension we need to have a more general measure. This
more general definition is the Hausdorff-Besicovitch dimension. In order to simplify the
work done to analyse the bitcoin’s price time series, we will focus on the Hurst exponent
knowing that there is a straight equation that relates both quantities:

D=2-H

Where D is the fractal dimension and H is the Hurst exponent. When D is close to 1 the
market shows persistence and a long-memory behaviour however when D is close to 2 the
market is anti-persistant and show a mean-reversion character which is translated by short
trading horizons and a turbulant behaviour.

2Source: Bloomberg
3Source: Bitstamp.

42 Bitcoin’s investments between Fear and Greed


https://www.bitstamp.net/

CHAPTER 4. BITCOIN MARKET’S MODELLING: A FRACTAL MARKET

The general Hurst exponent and fractal dimension

The MF-DFA analysis For the Multifractal analysis one should follow the coming
steps:

1. Determine the quantity Y (7),

where (r) is mean of returns.

2. Divide Y (i) into N, equal and segments that are not overlapping s, where N, =
int(N/s). Knowing that time series’ length is not generally a multiple of s we use
the same procedure starting from the end of Y to use the residual. In total, we have
2N, segments.

3. Compute the variance

F2(u, ) = %Z (Y[(v = 1)s +i] — P(i))?
for each segment v,v =1,... N, and
F2(u,s) = % STVIN = (v = Ny s +4] - P,(3))?

i=1

for each segment v,v = Ny + 1,...,2N,. we substruct P,(7), which is a fitting poly-
nomial (order 2), to get rid of the local trend.

4. Average over all segments and obtain the ¢ th order fluctuation function

2N, 1/q
F,(s) = {2]1\73 Z (F2(y, s))Q/z}

For ¢ = 0, the averaging procedure in the previous equation cannot be directly
applied. Instead, we employ the following logarithmic averaging procedure.

Fy(s) = exp [4]1\75 Zsln (FQ(;/,S))]

5. If the time series 7(i) are long-range power law correlated, Fy(s) is expected to be
the following functional form for large s.

F,(s) ~ @)
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Figure 4.1: The general Hurst exponent h(q)

The scaling exponent h(q) is the generalized Hurst exponent. For ¢ = 2, h(2) corres-
ponds to the well-known Hurst exponent H If h(2) < %, the time series is anti-persist and
if h(2) > 1, it is persistent. For h(2) = 3, the time series becomes a random walk.

After plotting the slope of log(F,(s)) ~ h(g) log(s) in 4.1 we can see that the slope changes
depending on ¢, which indicates the multi-fractal property of the price process.

h(2), being the standard Husrt exponent, can show that for the daily data set going
from the year of 2013 to 2021 the exponent is equal to 0.56. Following (Weron, 2002), the
functional of the confidence interval is

05 :|: e(—2.93 10g(M)+4.45)

Where M = log,(N). N being the sample size. The confidence interval is so narrow that
null hypothesis of the process following a Brownian motion is rejected.

This means that curve of Bitcoin price shows persistence in general. Taking a look on
the 1-min data, we notice a coefficient of 0.3 that shows a certain mean-reversion and a
turbulent state of the market. When investigating the price process during this period of
time we can see a mean reversion character and a slight increase in the historical volatility.
When applying the same analysis to the yearly data. We notice that for every year a multi-
fractal behaviour is captured. We can also see that some years exhibit anti-persistence. For
example, the last year, the returns process shows roughness which is consistent with the
large prices changes that bitcoin knew and its sensitivity to external events and market news
which implies the dominance of short-term trading horizons. A variable Hurst parameter,
fig 4.3, also suggests that the dynamics of bitcoins price vary overtime and a more general
model should be used to capture this variable behaviour.

Applying the Multi-fractal analysis to the historical volatility, we see that it also exhibits
a multifractal behaviour. The Hurst exponent is less than % which is consistent with results
empirically observed for other assets. This results support the use of a rough volatility
model.

44 Bitcoin’s investments between Fear and Greed



CHAPTER 4. BITCOIN MARKET’S MODELLING: A FRACTAL MARKET

0a 0.25

o7
020
0.6
015
05

0.10
04

03 0.05

(a) Daily price changes exponent by year (b) Volatility

Figure 4.2: The general Hurst exponent h(q)
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Wavelet analysis

The strength of the wavelet analysis is its ability to visualize the underlying’s information
both in the frequency and time domains, thus providing information about the price evol-
ution across different frequency and time scales. In this part we will reproduce the analysis
done by (Kristoufek, 2013) for standard markets on the Bitcoin’s one.

Wavelet: A wavelet v, 4(t) is an integrable function defined as
v (5Y)
\/E

s being the scale, u the location and ¢ the time. Any time series can be reconstructed back
from its wavelet transform if the admissibility condition

_ [P
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holds, where ¥(f) is the Fourier transform of a wavelet.
Wavelet satisfy ["= (t)dt = 0 and [">7?(t)dt = 1. To obtain the continuous wavelet
transform W, (u, s), a wavelet 9(.) is projected onto the examined series z(t) so that

e a(t)yr () dt
Wi (u,s) = /_Oo 7

where ¥*(.) is a complex conjugate of ¢(.). Importantly, the continuous wavelet transform
decomposes the series into frequencies and can then reconstruct the original series so that
there is no information loss, and energy of the examined series is maintained as well, i.e.

f0+°° fjozo W (u7 S)wu,s (t)dUdS

x(t) =

820\1;
2l = 0+oo fj;o W (u, s)|2duds
SZC\I/

where |W,(u, s)|2 is the wavelet power at scale s > 0. The wavelet used in our analysis is
the Morelet wavelet, it has been chosen in accordance with the existing literature and is
defined as follows with the existing literature

ez‘wot—tQ /2

Y(t) = i

with wy = 6, to provide a good balance between the time and frequency localization.

According to the FMH arguments, we should observe increased power at low scales or
high frequency during the critical periods. Moreover, we might observe a changing struc-
ture of variance across frequencies before the turbulences due to the changing structure
of investors’ activity and thus wavelet analysis might be a good tool to adapt the trading
activity to the market changes.

Regions of highest power are those characterised by high volatility. Important and
significant power is detected at high frequencies confirming, thus, the dominance of high
frequency trading. We can also see some power detected for lower frequencies implying that
in those periods, from 2013 to mid 2014, investors with multiple time horizons contributed
to the volatility generated. However, in the next periods we can notice lack of power in
the part corresponding to mid 2014 to 2017. The wavelet power spectrum of Bitcoin daily
returns at the end of 2017 shows a clear dominance at high frequency during the moments
of high volatility. Finally we can see a shadow of this behaviour in the last year which
explains the turbulence of this market and goes along with the multi-fractal analysis. The
turbulent times are characterised by the dominance of short horizons because the efficient
market clearing of orders is not possible due to the lack of liquidity.

These results confirm the fractal market hypothesis and therefore a fractal or multi-
fractal model should be used in order to accurately model the dynamics of Bitcoin and
other cryptocurrency markets.
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Figure 4.4: CW'T spectogram of bitcoin daily returns (Y axis represent the trading period)

Conclusion

Both the Muti-detrended fractal analysis and the wavelet analysis show that the Bitcoin
price dynamics present fractal behaviour, not only that but the Multi-detrended fractal
analysis show a multi-fractal behaviour. Therefore, it is interesting to try a rough stochastic
model as it my capture the rough behaviour of cryptocurrency.
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4.3 Rough volatility model

4.3.1 Fractional Brownian motion

The fractional Brownian motion is a generalisation of the Brownian motion as it is a fBM
when H:%

Definition 4 The fractional Brownian motion ({Bm ) with Hurst parameter H is the only
process WH to satisfy :

o Self-similarity : (W2) £ ot (WH)
o Stationary increments : (W[, — WH) £ (W,H)
e Gaussian process with E[W{] =0 and E [(WlH) 2] =1
Proposition 1 The absolute moments satisfy
E Wik, = wi[] = &
Proposition 2 For alle > 0, W is (H — ¢)-Holder a.s.

Proposition 3 The Mandelbrot-van Ness representation:

Eaw. 0 1 1
H S
W, _/—_ 1_H+/ — 7 T oiwm dW,
o (t—s)2 —oo \ (t —5)2 (—s)2

One can neglect the second term as it barely influences the formula

Assumptions

4.3.2 Rough Heston model

The model we will use is going to be a rough Heston model. The calibration of the Hurst
coefficient will adapt the model to the varying nature of volatility dynamics.
We consider the same filtered probability space as before. Let S; be the the price process
and V; be the volatility process. The dynamics of the rough Heston model are described
as follows.
dlog S, = pdt + /VidW,")
Ve=6(t) + rfory ot — o) 2 Ve (4.1)

d <W§S>, Wt(V>> — pdi

where v > 0, H € (O, %) The rough character is due to the the kernel (¢t — S)H’%. Let be
a=H+3.
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And where &(t) = E[V;],t > 0, which means the initial forward variance curve is an
input*. Same as the Heston model the rough Heston model has an affine structure. So,
solving a fractional Riccati equation, we can get the characteristic function:

E [eialog(ST)] — exp (ialog (S0) + /T D%h(a, T — u) - §O(U)du)
0

D® the Riemann-Liouville fractional derivative operator of order o refers to the imaginary
number, and h(a, -) solves the following fractional Riccati equation:

1 1
D%h(a,t) = —§a(a + 1) + iprah(a,t) + §V2h2(a, t), I'"“h(a,0) =0, (4.2)

I~ being the Riemann-Liouville fractional integral operator of order 1 — . To refresh
one’s memory: for a function f:

Df(t) = ﬁ% / (t— ) f(s)ds. T "f(t) = ﬁ / (t — ) (s)ds.

Data simulation

When the correlation factor is negative we use the fast rational approximation done by
(Gatheral & Radoicié¢, 2019) and (Remer, 2020) of the equation solution. This gives us
the characteristic function and then Heston pricing formulas are used. Other regions will
be priced using Monte Carlo method.

To simulate the fractional Brownian motion(fBM) we can use two methods. The
Cholesky method with time comlexity of g and the rDonsker method with time com-
plexity O(N log(N)). The simulation is based on the standard random motion simulation.
Meaning we will be simulating a gaussian vector representing the increments of the process.
However, in the fBM they are not independent. To explain the simulation process we start
with the Cholesky method. Since we know the formula to compute the moments between
different increments. We can compute I', the variance-covariance matrix.

['(t,s) = Cov (By(t), Bu(s)) = % (|t|2H + |87 — |t — s|2H)
(t — ) = Cov (B(t + 1) — By(t), Bu(s + 1) — By(s))
:%(|t—s—1|2H—2|t—s|2H—|—|t—3+1|2H).

When discretized at times i/N, for i =0,..., N — 1.

(F)i,jzf(%,%), fori,j=0,...,N —1.

4This curve can be obtained from quotes of variance swaps which in turn can be obtained from a full
surface of European call and put options
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Define I" as the matrix I" deprived of its first row and its first column. Since I' is a
symmetric definite positive matrix, it admits a Choleski decomposition IV = LL!, where
L is a lower triangular matrix. Thus simulating a sample of a fBm at times i/N for
i =1,...,N — 1 is equivalent to generate a vector Z of (N — 1) standard independent
Gaussian variables and apply the product LZ. Indeed, LZ is a centered Gaussian vector
and E ((LZ)(LZ)") =T". Define B = (0, (LZ)")", B is a sample of a fBm at times i/N for
1=20,...,N—1. This method is the only one exact in theory, but due to a computational
complexity of order O (N?) at best we use the rDonsker method.

To calibrate the model a Neural network approach would be used. 50000 call and put
samples, of the rough Heston model has been simulated for the training of the Network.
The different parameters where sampled using the following laws as used in (Rgmer, 2020)

Rough Heston
Par.  Distr. a b

H U 0 05
v U 0.10 1.25
p U —1 1

VE Ge 005 1

Calibration of the model

To calibrate the model we build a neural network representation of it

Neural networks Since neural networks are very efficient when approximating mul-
tivariate function F' : RY — RM™. In order to approximate the pricing formula in a way
that is fast to compute, thanks to the chain rule in computing derivatives, we will consider
a fully connected feed forward neural network. See the appendix C for further details on
neural networks.

The neural network designed for approximating implied volatilities on expiry-slice in 5
equal intervals and that for a model with n input parameters. Parameters are denoted 6;
for © = 1,...,n and implied volatilities o;. As hyperparameters for our network we used:
3 hidden layers, the Adam algorithm as an optimizer, Elu as our activation function and
root-meansquared-error as the loss function. We also scale the inputs and outputs. We
fixed the number of neurons to 200 neurons in each layer. For the actual training, we let
the optimizer run for 700 epochs using a batch size of 2000.

Training our model on our simulated dataset got us the following training accuracy:

Model/percentile  50%  75% 95% 99% 99.9% 99.99% Max
Rough Heston 0.14% 0.24% 0.81% 1.94% 6.21% 14.07% 84.23%

The testing accuracy is a little bit higher but didn’t exceed 2.1% for the 75% percentile
error.
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Figure 4.5: Implied volatility surface (on 30/07/2021)

Calibration For the integer pair (i, ) referring to the j* quoted strike of the i** expiry.
o denotes the implied volatility. Let ¢}3°% () be the implied volatility under rough
Heston model with parameter vector . The optimisation problem is then the minimisation

of the following RMSE with respect to the parameters vector.

RMSE(Q) = \/Z wz] (U,?;Odel _ O.;‘I;id (8))2

(6:9)

where the sum is over all contracts (7, j) from the particular calibration date and where w;;
denote some specific weights that are normalised so Z(i’ o Wi = 1. The weights represent
the number of contracts for a certain contract specification and liquidity.

The parameters of the model are then obtained using the back propagation aspect of
the deep learning using the trained neural network.

Results The back propagation process used on our set for the end of July 2021 yielded
the following parameters:

Rough Heston cal. params
H p v
Params | 0.21 0.72 1.68

We can see that we have the same aspects as the other models. The rough Heston model
captures the positive skew. The hurst exponent H < % which indicates the mean-reversion
and the rough character of the volatility.

Using these parameters trying to reproduce the volatility surface yielded the result in
fig 4.5
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We can see that this model better replicates the volatility surface than the previous
ones. The RMSE for this model was 3.78%

Conclusion

The reason the rough volatility model surpassed the other models is that it captures the
behaviour of market using far less parameters. Capturing the turbulence of the market
groups the behaviour of several parameters in the stochastic volatility model with co-jumps.
Finding efficient ways to calibrate those models can revolutionize the quantitative finance
field, as we can reproduce the market dynamics with a more general point of view, fewer
parameters and less monitoring.

4.3.3 Multi-fractal Model

Although the last model outperformed the non fractional ones, it still can benefit from
some improvements. As we have seen in the first part the price and volatility process
exhibits multifractality. After examination of the Hurst exponent in 4.3 we might see that
the Hurst process follows a certain process and varies across the time-frame. It is, therefore
to use Mandelbrot’s generalization of the trading time and substitute the fBM with the
multi-fractional Brownian motion (mBm).

the mBm is a Gaussian process for which the pointwise Holder exponent may be tuned
at each point: multifractional Brownian motion (mBm) is such an extension, obtained by
substituting the constant parameter H € (0,1) with a regularity function H ranging in

(0,1) :
¢ 0
H(t) dW, 1 B 1
Wt _/0 (=)0 /_oo ((t —5)s7HO ()37 HO s

The Holder exponents of mBm are prescribed almost surely: almost surely, the point-
wise (resp. local) Holder exponent at t is the minimum between H(t) and the pointwise
(resp. local) exponent of H at t. Multifractional Brownian motion is our prime example
of a stochastic process with prescribed local regularity. Other approaches exist in the lit-
erature like the fractional Brownian motion with a regime switching Hurst exponent in
(Liu, Di Matteo & Lux, 2007) where the Hurst exponent is a continuous Markov chain.
However, pricing under this model requires really complex computations.

Finally, and most importantly, investigating the rolling Hurst exponent in 4.3 we can
notice a sort of seasonality that might help us predict the behaviour of the market and thus
adapt our risk management and trading strategy. As we can see that a certain increase of
the coefficient happens every 3 to 4 years, although that this effect is decreasing over the
time. This is might be due to the halving principle that affects the equilibrium between
supply and demand. The halving have the same effect as decreasing the supply. It makes
the generation of bitcoins harder ad therefore makes it rarer which drives the price up.
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Driving the price up increases the volatility and make the system enters a turbulent state.
The Hurst exponent stabilises gradually after that.

The cryptocurrency market is widely driven by sentiment, beside catching this beha-
viour using an advanced multi-fractal model one can also think of adding a stochastic
quantity representing the sentiment of the market and calibrating its weight that when
market is turbulent (Hurst exponent decreases) the weight of the sentiment increases since
agents are trading based on the same set of information which consists of news and pub-
lic mood. As we have seen that a single tweet might sometimes destabilise the market
and change the price of cryptocurrencies that are heavily correlated. Both noise traders
and even bigger whales are sensitive to public mood and news on different scales. Since
ever large investors usually quit relatively risky assets in time of turbulence and economic
crises. Among existing models, a stochastic volatility type model where the volatility is an
indicator of sentiment calibrated on public mood data.
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Chapter 5

An evolving risk management
framework

?Businessmen need to understand the
psychology of risk more than the
mathematics of risk.”

Paul Gibbons

5.1 Introduction

After studying the dynamics of Bitcoin and figuring out the model that we will use to price
instruments derived on this new born asset. It is time to answer one of the main questions
in this thesis. What risk does holding derivatives of bitcoin present to an institution ¢
and how much capital should we reserve when adding crypto assets as underlying in an
investment portfolio ¢

5.2 Prudential Treatment of Cryptoasset Exposures

5.2.1 Legal risk

Since the increase of interest in the new digital crypto market and all its effects on the
financial sector. There has been an increasing need to clarify both governments and reg-
ulators point of view, and its legal implications, towards this new phenomena. Investors
are trying to grasp the opportunity to make profits investing in this new market while also
taking legal risk since central banks, regulators, associations and goverments are trying to
understand the nature of digital currencies and its impact on the world’s economy.

Cryptocurrency is unlike electronic money as it cannot be physically owned and trans-
ferred between agents. All legal risks come from the blurriness of the cryptocurrencies’
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nature and how people should react to it. It is like human beings discovering fire for the
first time. We don’t know wether we should avoid it or embrace its potential. In some
countries, crypto is considered as a currency which is the case of Salvador that legalized
bitcoin on the 7 of September, 2021. With the IMF urging it not to consider it as a
currency, especially after the sudden burst in the end of January 2022. Salvador might end
up prohibiting bitcoin and investors this way would lose a lot of money.

Added to that, this different understanding of cryptocurrency might cause a real legal risk
to investors concerning how should it be taxed.

As we have seen in the first part of this thesis, bitcoin exhibits different behaviour that
makes it hard for us to classify it in a specific market like equity, commodities... Some
countries like the Salvador considers it to be a currency while others, like the United States,
consider it to belong to the equity market. This creates a problem in the amount of tax-
ation to be accounted for. Since in the US, cryptocurrencies are considered as a property
by the IRS. When it comes to reporting earnings on their annual tax returns investors are
indebted to capital gain tax. However it is unclear whether holdings should also face addi-
tional tax if bought on a foreign exchanges. Confusion also rises when filling out the report
of Foreign Bank and Financial accounts if holdings exceed 10 thousand dollars however
this rule is not clear to be applied to cryptocurrency to this day and creates a black hole
of uncertainty for investors.

Added to that Bitcoin and other cryptos have a decentralized status. Hence, not backed
by any central authority. This could result in legal complications as the value of cryptos
is totally dependant on the demand and supply. This is true to all currencies. Therefore,
without a central authority backing their values, investors may be left in the chaos. Also
since there is no trusted financial institution to register transactions legal confusion might
take place between parties and legal recourse can be difficult if not impossible to asses,
because of the decentralization.

5.3 Capital treatment of cryptoassets

Regulating the cryptocurrency market jinstitutions and banks’ exposure to cryptoassets
has been one of the Basel’s committee evolving projects over the past few years.
Establishing clear and certain regulations is a must since several financial associations like
the ISDA', the CDC?, the CFMA® ... are demanding a clear point of view about crypto.
They think that this limited exposure is neither desirable nor sustainable. The reason
is that cryptoassets have several advantages that must be acquired within the regulatory
perimeter.

For instance, the distributed ledger technology can improve financial services by making
them faster and more secure: On the blockchain, transactions data can be saved at a speed

!International Swaps and Derivatives Association
2Chamber of Digital Commerce
3Construction Financial Management association
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and transparency that helps create a more efficient collateral management and better coun-
terparty, liquidity and settlement risk mitigation since transactions and recording of assets
is simultaneous.

Banks’ participation would greatly help regulatory landscape. Their vast expertise in
identifying, monitoring, and continually managing risks. In exchange they would benefit
from a risk-sensitive and adequately designed prudential framework, as it would provide
a vast land for innovation in order to respond to customer demand. For this reason, the
Basel committee must acknowledge hedging in the prudential framework.

5.3.1 Why should banks be involved in cryptoassets

As discussed earlier, the Prudential framework should encourage bank involvement in the
development of safe and efficient cryptoasset markets, yet with too restrictive regulations
bank involvement would be precluded. In this section we will discuss why we shouldn’t
keep the banks away from shaping the cryptocurrency market.

If banks are not in this process serving as intermediaries, unregulated agents will keep
expanding and this will definitely lead to market fragmentation that translates to fragility
in times of turbulence and stress due to the less transparent nature of an unregulated
sector. There is, therefore, a need for a more empirical and analytical framework that
extends to banks, leading to a more stable market as banks continuously identify, monitor
and manage risks from both a prudential and behavioural perspective.

Here, we further develop the advantages of bank involvement:

e Integration of investment banks in the cryptocurrency market will increase transpar-
ency: Banks are always supervised and examined by several regulators in the whole
world. As a matter of fact, they are obliged to provide transparent information and
to report to supervisor allowing access to different information on periodic basis. As
a result, activities conducted within a regulated bank are fully transparent to super-
visors. So they can use information regarding that activity to inform about potential
financial stability concerns.

e Another problem that might result from discarding banks from this market is its
fragmentation. Agents definitely want to invest in crypto assets seeking billions of
dollars products and services that have an effect on economies of scale from nonbank
financial intermediaries. This would lead to a concentration of risk in unregulated
financial sectors. Clients, therefore, won’t be as much protected using regular banks
services. Added to that we would have a major concern of money laundering and
anonymous customers.

e One of the major advantages of DLT is it’s transparency and ability to record trans-
action information the time it is taking place. Bank involvement in such a technology
would help it to significantly reduce operational risk. Banks harnessing the distrib-
uted ledger technology for cryptoassets and other services could also benefit from a
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great efficiency to collateral management, trading and settlement. Faster processes
will generally reduce counterparty and settlement risk and mitigate trades break
down.

e Banks can bring their strong expertise in risk management to cryptoasset markets.
Banking sector have known several crises, that made them experts at risk manage-
ment and helped them develop their own complex models that will protect them
from turbulent times in crypto market. Added to that they designed products that
can maintain strict limits and ensure that customer activity is both traceable and
reportable.

e Finally, Banks can reduce volatility in this new born market. They can play a pivotal
role in ensuring required liquidity and transparency. A liquid market is generally a
market with low volatility as this ensures an equilibrium between investors and avoids
sudden movements coming from agents altering the market. Moreover the hedging
tools that banks can offer will help agents mitigate risk and thus reduce volatility.

5.3.2 Prudential treatment of cryptoassets exposures: The Basel
committee

In June 2021, the basel committee have issued its consultative document for the treatement
of cryptoassets(on Banking Supervision, 2021). The committee have classified crypto-assets
into two groups:

e Group 1: is composed of cryptoassets who are either tokenised standard financial
asset or that are linked in value to an underlying traditional asset or a an index
of traditional assets. Those assets are usually called stable coins or assets. Added
to that their transaction are done by regulated institutions. The functions of the
cryptoassets and its network, including DL, are designed to mitigate and manage
material risks. Group 1 itself is therefore divided into two groups:

— Group la, which are tokenised assets

— Group 1b which are cryptoassets with effective stabilisation mechanisms like

USDT.

This group is subject to equivalent risk-based capital requirements based on the risk
weights of underlying exposures as set out in the existing Basel capital framework.

e Group 2: Is composed of tokens that don’t meet the definition of group 1. The basel
committee think that they pose higher risks. However this classification might be
extremely general since not all cryptocurrencies behave in the same way. There is
a huge differnece between coins like Bitcoin or Etherium and others like Shiba coin.
Since some coins have enough liquidity that can mitigate the risks.
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Capital requirements

Group 1 Although we are far more interested in Group 2 crypto assets The Basel com-
mittee have set for Group 1 a richer proposal of regulation than of that of Bitcoin and other
cryptocurrencies. This section describes the minimum risk-based capital requirements for
credit and market risk for Group 1*. The most important points are:

e Activities related to cryptoassets will give rise to an operational risk charge within
the Basel framework. Since theses cryptoassets technlogy is considered new the risks
are unanticipated. Those risks could be managed by applying a Pillar 1 add-on
operational risk charge for all Group 1 cryptoassets to which a bank is exposed.
However the calibration of this charge is challenging and not yet defined.

e The committee set the minimum capital requirements for credit risk and market risk.

e Crypto-assets in Group 1 should be subject to the requirements set forth in the Basel
framework for determining their allocation between the banking and trading books
and for determining whether exposures are treated using standardized or internal
model-based approaches. While internal model-based approaches are not prohibited
under the treatment proposed in this consultation, supervisors should exercise great
caution in deciding whether to allow such approaches, given the novel characteristics
of crypto-assets.

Group 2 According to the Basel committee Group 2 cryptoassets are a lot riskier then
Group. The requirements not only apply to all cryptos that don’t satisfy the first classi-
fication but also to funds that are based on these assets like ETFs and derivatives, futures
and products lying on them. The problem with the basel treatement is that is too simple
and conservative for this category especially liquid and project based cryptos. The capital
requirement consists of defining a risk weight of 1250% applied to the maximum of the
absolute value of the all long positions and that of the short positions of the institution.

RW A = 12.5 max(||Short,esitions|| » || LonGpositions||) (5.1)

The risk weight is chosen so that the bank is capitalizing all the exposure’. This RWA is
computed independently for every cryptoasset exposure of the bank.

Another too conservative approach is that when the bank is holding a derivative the ex-
posure isn’t the derivative value yet the underlying exposure. The formula used is

min(underlying value, mazimumloss)

Meaning if the underlying value exceeds the maximum loss, the maximum loss is taken
instead. However this conservative approach includes both credit and market risk plus the

4The requirements only apply to those Group 1 cryptoassets which have not been deducted from
Common Equity Tier 1 capital.
5Capitalisation=0.08*RWA where 0.08*12.5=1
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counterparty risk (CVA® in this case).

In order to compute credit risk for derivative exposures: the Replacement Cost (RC) is
added to the Potential Future Exposure (PFE), where the PFE is to be calculated as 50%
of the gross notional amount. When calculating the RC, netting will be allowed within
eligible and enforceable netting sets but not allowed between different cryptoassets.

Netting sets with a single counterparty that consists of only types of derivatives related
to cryptoassets or derivatives related to cryptoassets and traditional asset transactions,
would be treated separately.

The application of the 1250% risk weight set out in the above formula will ensure
that banks are required to hold risk-based capital at least equal in value to their Group 2
cryptoasset exposures. In other words, the capital will be sufficient to absorb a full write-
off of the cryptoasset exposures without exposing depositors and other senior creditors of
the banks to a loss. The application of a 1250% risk weight to an asset is similar in effect
to the deduction of the asset from capital. Unlike a deduction, however, a risk weight
approach can also be applied to short positions, where there may be no balance sheet asset
to deduct. For simplicity, the above formula also applies the 1250% risk weight to short
positions. Theoretically, short positions and certain other types of exposures could lead to
unlimited losses and thus, in some circumstances, the formula could require capital that is
insufficient to cover potential future losses. Banks will be responsible for demonstrating the
materiality of these risks under the supervisory review of cryptoassets and whether risks are
materially underestimated. Supervisors will be responsible for considering an additional
capital charge in the form of a Pillar 1 add-on in cases where banks have material exposures
to short positions in cryptoassets or to cryptoasset derivatives that could give rise to losses
that exceed the capital required by the 1250% risk weight. In applicable cases, the capital
add-on would be calibrated by requiring banks to calculate aggregate capital requirements
under the Committee’s revised market risk framework (applying a 100% risk weight for
delta, vega, and curvature) and Basic CVA risk framework (BA-CVA) and to use this
amount if the result is higher than the requirement based on a 1250% risk weight.

6Credit valuation adjustment is an adjustement to the market value of derivative instruments to account
for counterparty credit risk and accounts for the ability of a counterparty’s to default.
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5.3.3 Proposal for new regulations

We will focus in this part on Group 2 Assets which include Bitcoin. As stated in the
different associations response to the Basel proposal, the classification of cryptocurrencies
lacks granularity since Group 2 includes different kinds of coins that behave in a very
different way. For example, the behaviour and risk for Etherium and Shiba coin is not the
same. One of them has a sufficient market liquidity and a project that backs it up while the
other is created out of a hype that might end in any moment and cause a permanent crash.
Furthermore, the use of a single, punitive risk weight for Group 2 cryptoassets, rather
than incorporating the existing risk treatments under the Basel framework, compromises
longstanding prudential framework principles.

ISDA added to CDC and IIF” proposed that this group should be further devised
into two groups (ISDA, 2021): Group 2a and Group 2b. Group 2a, for example, shall
include cryptos for which there is a liquid two-way market. Although they exhibit volatile
behaviour, they also exhibit market depth and price discovery. In addition, as discussed
elsewhere in this response, the nature of banks’ exposures to Group 2 cryptoassets may
vary widely with materially different results in risk profiles. So the existing prudential
framework for market risk and derivatives should be adjusted in order ro incorporate
crypto assets, especially group 2a.

Capital Requirement

The single risk weight applied without considering any netting or hedging touls or be-
nefits is too conservative. With crypto assets of Group 2a, there is enough liquidity and
an evolving market that permits banks to use collateralization, hedging, and counterparty
netting. That is why, if adjusted, the standards of the prudential framework can be applied
to group 2a cryptoassets.

We can see that Group 2a exhibits correlation with their derivatives even in times of
high volatility and market disturbance. This can demonstrate how well they are adapted
to market risk hedging techniques. When applying a high risk weight to the greater of
the absolute value of long and short positions, appropriate risk mitigation thanks to this
correlation is avoided rather than used.

Group 2a could be held in the trading and banking book. However price exposures
for this group is captured in a better way in the market risk framework. The FRTB?®,
SA-CCR?Y and CVA framework should be applied too.

Prudential Framework adjustments

FRTB When adjusting the FRTB framework we would maintain simplicity of risk man-
agement, compute more accurate risk weighted assets inline with the risk and properties

"International Institute of Finance
8Fundamental Review of the Trading Book
9Standard Approach of Counterparty Credit Risk
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of those assets. Cryptoassets should be added to the sensitivities based model. First of all
if they are defined in the bank’s reporting currency that would allow the separation of its
risk from other traditional currencies risk. Added to that sensitivities for the same crypto
asset should be netted before applications of risk weight.

As stated in the response of the financial associations to the the BIS proposal a risk
weight of 90% to 95% should be applied based on price changes in a porfolio of group
2a cryptoassets composed of BTC, BTC cash and futures and ETH with a conservative
liquidity horizon of 20 days from October 2017 to July 2021'".

The analysis were first performed for 10 days horizon price and volatility and 20 days
horizon price and volatility data, computing thus 99% two sided value at rik (VAR) and
two sided 97.5% Expected shortfall (ES) also known as Conditional VaR.

Liquidity Horizon Group 2a

99% VaR | 97.5% ES
10 days 65% 68%
20 days 92% 95%

A similar computation were done using a Monte Carlo approach diffusing the market
with the rough Heston model for a BTC, BTC vanillas, and Futures sample portfolio and
calculating the VaR and CVaR!! values from the different P&Ls got us the following results.

Liquidity Horizon Group 2a

99% VaR | 97.5% ES
10 days 1% 75%
20 days 96% 99%

The results differ since we didn’t use the same portfolios neither the same model. The
results show us that a general requirement applied for every crypto asset is rather not
appropriate for those crypto assets that even belong to a new born market yet show con-
sistency, project and market depth. That is why one should adjust the already existing
framework to them in order to integrate banks in the process and further develop this
market.

One must also say that correlation of Group 2a crypto assets can offer hedging opportun-
ities and relatively independence from traditional markets can offer serious diversification
for options and hedging possibilities.

The next of Mazars’ project for the integration crypto assets is the adjustment of our Eco-
nomic Scenario Generator and the integration of the implementation of these models in
order to have a more general vue on the inclusion of crypto assets in the financial institution
investments.

CVA The CVA risk of crypto derivatives is not very different of other assets or underliers.
Banks should be able the already existing frame work with same weights, bucketing etc...

10A risk weight of 90% corresponds to 1125 % in RWA
HFor definitions see chapter 3
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However, as opposed to what the financial associations think. Volatility of cryptos with
a lack of diversification might lead to a more probable default. That is why, some of
these factors like the PD of the default process should be adjusted in order for the present
framework to be efficient.

SA-CCR The counterparty credit risk for derivatives of crypto-assets is the same of
traditional ones like equity, commodity or credit. However as stated before the exposure
might be different but not the nature of the risk.

5.3.4 New regulations

The Basel committee issued a new proposal in June 2022. The basic structure is main-
tained as the main change concerns unbacked cryptoassets and stablecoins with ineffective
stabilisation mechanisms also known as group 2 cryptoassets. As, as advised, a distinc-
tion has been made between project backed coins with sufficient liquidity and other coins.
The updated proposal is no longer too conservative and propose adopted market risk tools
with risk add-ons to group 2a cryptoassets. Given the fast evolution and nature of the
cryptoasset market, the Committee will continue to monitor developments during the con-
sultation periods with the help of financial associations.
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Conclusions and future
recommendations

Cryptocurrency market is a gold mine for people investing in it. Large institutions like
banks, hedge funds or insurance companies are showing so much interest in this emerging
market as they want a piece of the cake of these phenomenal returns during the last ten
years. However these returns come with a price: volatility and unpredictability of the price
which can make those institutions insolvent in a blink of an eye if they cannot manage the
cryptocurrency risks. In the scope of this project, we tried to understand this new-born
market in order to hedge its multiple risks.

In the scope of the first chapter, we have studied the properties of the Bitcoin derivatives
market to asses information that can be useful during the modelling process.

For the first part we started by several standard stochastic models, and we have shown
at each time why one should add complexity to the model varying from stochastic volatility
to jumps. The last model implemented was the Stochastic volatility model with correlated
jumps, used by (Hou et al., 2020), that groups all characteristics of the previous models.
This model showed relatively good results. Bitcoin volatility surface resembles the com-
modity surface as we can see a forward skew. We can also see that the behaviour of the
surface really depends how investors view the market.

Finally we have shown that both the price and volatility processes of Bitcoin exhibit
multi-fractality using the multi-fractal detrended fluctuation analysis and wavelets analysis.
Those two methods showed that the bitcoin market, actually, follows the fractal market
hypothesis theory and that the process presents persistence or roughness from time to time.

We considered a rough volatility model, the rough Heston model and calibrated it us-
ing neural networks. Moreover, we discussed the potential need for a multi-fractal model.
These models are still not commonly used in quantitative finance due to their complexity
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but are rich enough to capture the changing dynamics of cryptocurrency.

Last but not least, we present the new proposal of regulations proposed by the Bale
committee and the recommendations issued by several financial associations. For future
work, one can look into some fundamental issues like the interest rate and transactions’
fees used for bitcoin modelling, study how the technical characteristics of several crypto-
currencies alter with its price dynamics. And finally build a capital friendly strategies
using crypto-assets and options to test whether the regulations issued fit this market.
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Appendix A
MCMC Algorithms

Following definitions are extracted from (Palomba, 2019)

A.1 Gibbs Sampling

When iterative direct sampling from all of the complete conditionals is possible via standard
methods, the resulting MCMC algorithm is a Gibbs sampler. In general, given (0, X(@),
a Gibbs sampler is defined by

1. Draw 0" ~ p (0| X©Y)
2. Draw XM ~ p (X | 6WY)

Iterating the two steps, the Gibbs sampler generates a sequence of random variables,
{@(9),X(9)}§:1, that converges to p(©,X | Y). The algorithm runs until it converges,
and then a sample is drawn from the limiting distribution.

The Gibbs sampler requires that one can conveniently draw from the complete set of
conditional distributions.

A.2 Metropolis-Hasting algorithm

" When one of the parameter posterior conditionals, namely 7 (0;) := p (@i | O, X, Y),
can be derived (as a function of ©;), but it is not possible to generate a sample from
the distribution. Consider a single parameter and suppose we are trying to sample from
a one-dimensional distribution, 7(©), i.e., we are suppressing the dependence of other
parameters and states in the conditional posterior, p (@i | ©4), X, Y). To generate samples
from 7(0), a Metropolis-Hastings algorithm requires the specification of a recognizable
proposal or candidate density ¢ (@(g“) | @(9)) . This distribution will generally depend on
the other parameters, the state variables and the previous draws for the parameter being

!The basics of this algorithm is derived from (Johannes & Polson, 2010)
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drawn. As in Metropolis, et al., we only require that we can easily evaluate density ratio
7 (0Wt)) /7 (019) and this assumption is satisfied in the majority of continuous-time
models.

The Metropolis-Hastings algorithm samples iteratively as in the Gibbs sampler, but
it first draws a candidate point that will be accepted or rejected based on the accept-
ance probability. The Metropolis-Hastings algorithm consists of the following two stage
procedure:

Step 1: Draw @Z(gﬂ) from the proposal density ¢ (@Z(»QH) | @Eg))
Step 2: Accept @5.9“’ with probability « (@Egﬂ), @gg) ) where

(9+1) (9+1) (9)
(677) i (o 18

- <@Z(g)> /q (@Z(g) | @Z(g+1))

Specifically, implementing Metropolis-Hastings requires: drawing a candidate O, from
q (@i | @Z(-g)>, drawing u ~ Uniform [0, 1], accepting the draw, that is, set @EQH) =6, if

u <« (@Eg),@ggﬂ)), and otherwise rejecting the draw, that is, set @EQH) = @Eg). This
algorithm splits the conditional distribution into two parts: a recognizable distribution to
generate candidate points and an unrecognizable part from which the acceptance criteria
arise. The acceptance criterion insures that the algorithm has the correct equilibrium dis-
tribution. Continuing in this manner, the algorithm generates samples {@(9)};1 whose
limiting distribution is 7(©).

It is then straightforward to see that Gibbs sampling is a special case of Metropolis-
Hastings, where ¢ (@<9+1) | @(9)) o (6(9“)) . This implies that the acceptance probab-
ility is always one and the algorithm always moves. The Metropolis-Hastings algorithm
allows the functional form of the density to be non-analytic. When there are constraints
in the parameter space, one can just reject these draws. In addition, sampling can be done
conditional on specific regions, providing a convenient approach for analyzing parameter
restrictions imposed by economic models.

The problem with this algorithm is that the choice of proposal density can affect the per-
formance of the algorithm as in some cases, the algorithm may never converge, getting
stuck in a region of the parameter space.

There are two important special cases of the general Metropolis-Hastings algorithm
which deserve special attention.

e Metropolis-Hastings algorithm can draw @+ directly from proposal density, ¢ (@(9+1) | @(9)),
which has a dependence from the previous Markov state © (and, in general, other

parameters and states) or from a distribution independent of the previous state,
q (@(9+1) | @(9)) =q (@(9“)) . The second is known as an independence Metropolis-
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Hastings algorithm:

Step 1: Draw @EQH) from the proposal density ¢ (@(g+1)>

i

Step 2: Accept @EQH) with probability a <®§g+1), @Eg)> where

- <@§g+1)> /q (@Z(g+1)> 1

(67 /a (67

The candidate draws, ©@+D are then drawn independently from the previous state,

o <@(g+1), @Z(-g)> = min

)

but in general the sequence {8(9)}511 will not be independent while the acceptance
probability depends on previous draws. When using independence Metropolis, it is
common to pick the proposal density to closely match certain properties of the target
distribution.

The original algorithm considered by Metropolis, et al.is the so called Random-walk
Metropolis. It draws a candidate from ©Ut) = ©W 4 ¢, where ¢, is an inde-
pendent mean zero error term (e.g. a symmetric density function with fat tails,
like a t-distribution). The choice of the proposal density is generic, ignoring the
structural features of the target density and the symmetry in the proposal density,
q (0™ | 0W) = ¢ (0@ | ©ltD) leads to a simplification of the algorithm:

Step 1: Draw @EQH) from the proposal density ¢ <@§g+1) \ @f)
Step 2: Accept @EQH) with probability o (@,(;gﬂ), @Z(g)) where

T <@§-g+l)>

™ (@59 )>
The variance of the error term is under control and adjusted to tune the algorithm
helping us obtain an acceptable level of accepted draws (20t040%).

o (®§9+1), @Eg)> = min .1
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Crude Monte Carlo

Algorithm (Crude Monte Carlo for Independent Data)

1. Generate Yi,..., Yy S f (for example, from independent simulation runs).

2. Calculate the point estimate Y and confidence interval (13) of £ = EY.

It is often the case that the output Y is a function of some underlying random vector or
stochastic process; that is, Y = H(X), where H is a real-valued performance function and
X is a random vector or process. The beauty of Monte Carlo for estimation is that the
TCL formula holds regardless of the dimension of X.
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Neural network

Input Hidden Hidden Hidden Outpae
layer L layer Ly Llayer Ly layer Ly layer Ly

Figure C.1: a feed-forward Network

A feed-forward network is a mapping F,e : RN — RM being defined by its general
architecture and a number of network weights denoted w. To evaluate F,. one then
traverses from left to right in the graph and at each node (excluding the input layer)
performs a computation of the form y +— o (a’x 4+ b) where y is the output from the
last layer (a column vector), o a non-linear (activation) function, a a coefficient (column-
Jvector and b a scalar. Letting w denote the collection of all such coefficients a and b, the
problem of finding a neural network approximation to F' then consists of finding both an
architecture as well as weights w, that minimize the error between F,.; and F. Assuming
the architecture has already been fixed, this is typically done as follows: To start, one
generates a synthetic (training) dataset of input-output pairs by evaluating F' at various
inputs x and storing the results y = F'(z). The inputs will in practise often be randomly
sampled from some distribution covering the domain over which we wish to approximate
F. Letting X be such a random input sample, we then define the generalisation error as
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the number
E[L (Fer (X;w), F(X))]

where £ : RM x RM — R is some loss function and Fj (X;w) refers to the neural
network being evaluated in X using weights w. An empirical version of (8) is then easily
constructed on the training data by averaging errors across the samples. To train the
network one can then minimize this empirical version with respect to w. This is usually
done using stochastic gradient descent which is a gradient based optimization method where
one iterates in epochs (i.e. cycles) across the training data, first shuffling all samples, then
looping over smaller batches of the samples (covering all of them) each time updating the
weights using a gradient estimate. Let us end by pointing out that the approximations can
in fact be theoretically justified. As an example, the Universal Approximation Theorem
of essentially says that any continuous function can be arbitrarily well approximated on
a compact domain by a single hidden-layer network. It shall though be noted, that it
generally is considered true that deep neural networks have an improved approximation
capacity.
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Chapter 7

Executive summary

7.1 Introduction

The history of crypto-assets can be traced back to the creation of Bitcoin by ”Satoshi
Nakamoto” in 2008. Since then, the blockchain technology and cryptocurrencies have
gained much interest for many investors. The emergence of Bitcoin options and futures
in cryptocurrency derivatives exchanges have announced the beginning of a new epoch
in Bitcoin price risk hedging. Options and futures give a certain freedom to trade and
hedge volatile fluctuations in the asset price effectively. As opposed to other financial
markets, a little research was done on this growing market which presents a major hurdle
for institutions that want to invest or already investing in bitcoin like Grayscale, Ark Invest,
Tesla ... In the scope of this report, we investigate crypto-assets dynamics to better hedge
the risk of investing in this new-born market. Our approach consists of using stochastic
models to better model bitcoin as long as other crypto-assets. We finally review the new
proposal for regulation and the different recommendations of the financial associations.

7.1.1 The cryptocurency market

Bitcoin Markets’ Actors The bitcoin markets’ actors are the miners who are crucial
participants that verify the legitimacy of Bitcoin transactions through the Proof-of-Work
and are rewarded in bitcoin, Retail Investors and Traders, Institutional Investors
and Traders who significantly increased their adoption in recent years, with hedge funds
and quant traders from major investment banks (JP Morgan, Goldman Sachs,etc..) leading
the way. Corporations and Exchanges who act as a market intermediate between two
parties. Those who want to buy and those who want to sell. Their fees are minimal
compared to other markets however they have control over the cryptocurrency which can
lead to high security risks. Among the most important exchanges the Chicago CME,
Coinbase, Deribit from which we got our options data which consists of European style
vanilla options. Fees are neglected since they are minimal.
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Bitcoin’s price Bitcoin is actually scarce meaning that there will never be more than 21
million bitcoin. It is immune to quantitative easing and other inflationary measures and
can be easier to transport, store, and divide. The price is determined through supply and
demand. Bitcoin is traded 24 hours a day 7 days a week and therefore there is no closing
price. Its value is determined upon a rolling average. Finally, the level of supply and
demand may vary across different exchanges. Hence, the difference observed in Bitcoin
price.It’s hard for traders to arbitrage differences across exchanges because of the high
cross fees.

Liquidity: spread and volume Liquidity explains how easy a particular asset can be
exchanged without altering the stability of its price. We can see in fig 2.3 that 50-days
average trading volume for bitcoin options is 639 Mil dollars which represents nothing
compared to the SP500 where the 50-days options average trading volume exceeds 60
billion dollars. Greater trading volume means greater trading activity and is therefore a
strong indicator of a liquid market. The bid-ask spread is the difference between the price
in the order book at which market agents are willing to sell or buy a derivative. As we
can see in fig 2.5 in the report the spread for a call option almost at the money is almost
1300 bp which is considered to be enormous compared to the For-ex market where the
spread of EUR/USD doesn’t exceed 5 bp. If a number represents a valid security price,
then there must be parties in the market willing to transact the security at that price.
To improve price accuracy we may want to increase order size. However, at some point
the order will become so large that it will affect price. The spread decreases yet the price
is distorted. This quality has been pointed out to resemble the Heisenberg’s uncertainty
principle in quantum mechanics.

Transaction Costs It is true that when trading short term, transaction costs can make
a winning strategy a losing one. However, in this project, we decided to neglect transaction
costs to simplify the modeling process.

7.2 Cryptocurrency market modelling

To better understand the market. We started exploring some of the most known models
adding some complexity to it on the run, if needed.

7.2.1 Black & Scholes

Assumptions Black-Scholes model assert some strong assumptions like the completeness
and efficiency of the market and that the returns of the underlying are Gaussian, stationary
and independent. The interest rate used is the risk-free rate for the USD and transaction
costs have been neglected to simplify the modelling.
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The mathematical model and the volatility surface The price process in the Black-
Scholes model follows this dynamics:

d
ds: = pdt + odW, for p,o >0 (7.1)

t

Using the Ito formula we can deduce the price function of vanilla Cgg options and other
derivatives. The real purpose of this model is to investigate the implied volatility of bit-
coin’s options. Giving that the vanilla options price function in the Black-Scholes model
is bijective, we can inverse it to get the volatility from market prices. To solve the latter
inversion problem two numerical methods were used: The Newton-Ralphson and bisection
methods. Yet Newton-Ralphson algorithm was faster to converge as it needed no more
than 5 or 6 iterations. One can see the different surfaces interpolated using cubic spline
method in fig 3.1 in the report.

Interpretation We observe the same features in a standard market. The smile is caused
by several reasons. The most important one is probably the supply and demand. For
instance in the FX market the smile is symmetrical. We can see a shade of this in 3.1 on
the 17" of august. For bitcoin the reason behind this is that many investors use bitcoin
options equally for hedging risk and for speculation, so they might sometimes be interested
in both ITM calls and OTM puts. Looking at the same figure but on the 30 of July,
the volatility surface exhibits a heavy skew just like the equity market and that is due to
the fact that investors have to protect themselves against large drops since Bitcoin price
knew a huge drop in the end of July specifically so they get protective puts to hedge that
risk. For the second data set. The forward volatility skew is fairly apparent. This suggests
that the demand for buying out-of-the-money calls and in-the-money puts has increased
significantly not only hedge the Bitcoin price risk yet to speculate its increase. Eventually,
as the options approach maturity, the implied volatilities rose to more than 180% for some
trading day. Therefore, the appropriate interpretation of the increase in implied volatilities
is the demand for these strikes.

Conclusion By looking at the properties of the bitcoin volatility smile, the existence
of forward volatility skewness resembles the skewness of traditional commodity markets
rather than equity ones. One can conclude that Bitcoin might belong to the commodity
class of assets. The use of the BS model has shown that it is necessary to add jumps to
capture sudden changes in the price and to try the stochastic model in order to capture
the dynamics of the volatility.

7.2.2 Merton model

Assumptions The model is based on the assumptions of the Black-Scholes model. The
interest rate used is the risk-free rate for USD and transaction costs have been neglected
to simplify the modelling process.
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The Mathematical model The dynamics of the price process is given by:

{ dX; = pdt + odW; + JdN,
h(X:) = exp (X¢) = S

where o and p are constants and the jump sizes are normal Vi, J; ~ N (m, §?). Therefore
let be Q; = Ef\ﬁl J; a compound Poisson process describing the jump process. For vanilla
options we have explicit price formulas which makes the calibration easier.

We need to calibrate the four parameters of the model with are the volatility o, the
jumps occurrence parameter A, the jumps size mean and variance m and 6. The process
is done through a simple optimization problem solved by the Sequential Least Squared
Quadratic Programming (SLSQP) developed by (Kraft, 1988) already implemented in
Python’s package scipy. Results are shown in 3.2.

Results and conclusions The Merton jump diffusion model was able to price the vanilla
options with an relative mean squared error of 14.89 %. When compared to the Black-
Scholes model The Merton model was able to reproduce in a way the volatility smile as we
see in 3.3. The strength of jump diffusion processes is that it fits short-term skews that are
usually more pronounced since adding jumps captures sudden variations in close future.
However, volatility is constant over time. A Heston model will then be used to capture the
dynamics of volatility.

7.2.3 Stochastic volatility
The mathematical model

Let S; be the the price process and V; be the volatility process. The dynamics of the
Heston model are described as follows.

dS, = pS,dt + /V,S,dW,>
AV, = k (v — V) dt + o/VedW," (7.2)
d <W§5>, W§V>> — pdt

The drift term in the volatility dynamics is mean reverting when x > 0, with v being the
long-term mean level of the variance. In fact, if at time ¢ the process V; is greater than 6,
the drift term will push the process value down.

Calibration of the model

The calibration of the Heston model is trickier than the other models. First of all there
are 5 parameters that need to be calibrated and the objective function is not known to be
convex. A complexity is added later on due to the dependency of some parameters. As a
matter of fact o and k offset each other. That might be due to the fact that the objective
function is flat reaching the optimum.
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Like the other models we will try to minimise a vanilla option’s price and the one found on
the market. We use (Cui et al., 2016) equations for the calibration process, as he simplified
the optimisation problem. To solve the optimization problem we used the Levenberg-
Marquardt(LM) mtheod. The LM algrithm is a typical tool to solve a nonlinear least
squares problem, The search step is given by: A@ = (JJT + MI)_1 V f By adjusting pu,
the method changes between the gradient descent method and the Gauss-Newton method.
1Ability of the model to capture forward skew

Results and conclusions Looking at the correlation between stock price and volatility,
we can see that, as opposed to many empirical studies that have documented a negative
correlation between the stock price and volatility processes (Black, 1976). In the case of
bitcoin the correlation parameter p is positive since there is a higher deep OTM calls for
speculation. The positive parameter might also indicate the presence of the noise trading
behaviour as the rise of volatility attracts short term traders and thus the price increases.
We used the model to price our options, overall the Heston model performed better than
the ones before it. The relative mean squared error of the stochastic volatility model is
11.84% for July the 30" and 9.76% for August the 18

Using the Heston prices we derived the implied volatility surface in fig 3.6. Overall the
model reproduces the volatility surface yet it performs poorly for short maturities. To
solve this problem one can add jumps to a stochastic volatility model.

7.2.4 Stochastic volatility with co-jumps
The mathematical model

Let S; be the price process and V; the volatility one, the SVCJ dynamics are as follows:

dlog S; = pdt + /V,dW ) + ZYdN,
AV, = k(0 — V;) dt + o/ VidW,") + ZVdN,
d <W§S), Wt(V>> — pdt
P(dN, = 1) = \dt

(7.3)

N, is a pure jump process with a constant mean jump-arrival rate \. The random jump
sizes are Z}, Z{. We assume that the random jump size Z; conditional on Z; is

Zgl ‘ Zy ~N (:uy + ijf,Uz) ; Zf ~exp (ﬂv)
Results and conclusions Following (Hou et al., 2020) the calibration is done using
Markov chain Monte Carlo methods (MCMC). The calibration process yielded the para-
meters in table 3.1. The SVCJ model fits the data well and the significance of the jump

parameters relatively explains the need of this model. The pricing of the cryptocurrency
vanilla options is done using Crude Monte Carlo simulations' using: E? [e™""=9C(T) | F]

lsee appendix B
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As expected the SVCJ model outperformed the previous models with an RMSE of 8.12
%. We were able to reproduce the SVCJ volatility surface in fig 3.8. We can see that this
model represents well the volatility surface plus we can observe thanks to the error surface
that we relatively solved the short-term skew fitting problem of the Heston model. The
price of Bitcoin is on some level governed by noise trading. This makes us think that it
might have a fractal behavior. In the next section, we investigate this hypothesis.

7.3 Cryptocurrency: A rough model in needed

Cryptocurrency and the fractal market hypothesis (FMH) The Efficient Market
Hypothesis implies that the price process reflects all available information and therefore
it is impossible for markets participants to consistently outperform the market on risk ad-
justed basis. In his book, Peters outlined a new theory based on empirical studies of the
different markets: The fractal market hypothesis (FMH). This theory states that the mar-
ket contains many investors with different investment horizons and different information
sets. Investors with longer-term horizons base their decisions on fundamental information,
yet shorter-term ones rely on technical aspects. This structure provides liquidity to the
different agents making the market stable. During turbulent times the investment horizons
and information sets become uniform which dries liquidity and therefore drives volatility
upwards and therefore attracts more short term investors and noise traders.

Evidence of cryptocurrencies fractal behaviour

To capture the fractal structure of the market we use the multi fractal analysis and the
continuous wavelet analysis.

The MF-DFA analysis is used to measure the general Hurst exponent h(g). For ¢ = 2,
h(2) corresponds to the well-known Hurst exponent H If h(2) < 0.5, the time series is
anti-persist and if h(2) > 0.5, it is persistent. For h(2) = 0.5, the time series becomes a
random walk. Using this method for the daily volatility and price of bitcoin we plotted
4.1. We can see a multi-fractality behaviour. For the price data H is equal to 0.56. This
means that curve of Bitcoin price shows persistence in general. Taking a look on the 1-min
data, we notice a coefficient of 0.3 that shows a certain mean-reversion and a turbulent
state of the market for the last 10 days of September. When investigating the price process
during this period of time we can see a mean reversion character and a slight increase in
the historical volatility.

When applying the same analysis to the yearly data. We notice that for every year a multi-
fractal behaviour is captured. We can also see that some years exhibit anti-persistence.
For example, the last year, the returns process shows roughness which is consistent with
the large prices changes that bitcoin knew and its sensitivity to external events and mar-
ket news which implies the dominance of short-term trading horizons. A variable Hurst
parameter, fig 4.3, also suggests that the dynamics of bitcoins price vary overtime and
a more general model should be used to capture this variable behaviour. Applying the
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Multi-fractal analysis to the historical volatility, we see that it exhibits also a multifractal
behaviour. The Hurst exponent is less than % which is consistent with results empirically
observed for other assets. This results supports the use of a rough volatility model.

Wavelet analysis

The strength of the wavelet analysis is its ability to visualize the underlying information
both frequency and time domains, thus providing information about the price evolution
across different frequency and time scales. According to the FMH arguments, we should
observe increased power at low scales or high frequency during the critical periods. See-
ing fig 4.4 we can confirm those hypothesises. Moreover, we observe a changing structure
of variance across frequencies before the turbulences due to the changing structure of in-
vestors’ activity. Important and significant power (volatility) is detected at high frequencies
confirming, thus, the dominance of high frequency trading.

7.4 Rough volatility model

Due to the fractal behaviour spotted in the previous part. We used the rough Heston
model described as follows:

dlog St pdt + \/thw (%)
v)
= &)+t bt VW (7.4)
Cov (th AW, ) — pdt

where v > 0, H € (O ) The rough character is due to the the kernel (t — s)772. Let be
a=H+3.

And where &(t) = E[V;],t > 0, which means the initial forward variance curve is an
input. We began by simulating the price and volatility model using various techniques of
fractal Brownian motion simulation. This helped us create an image of a market powered
using this model and thus create volatility surfaces that would be used to train a Feed-
forward neural network. Using this trained Neural Network, we were able to calibrate our
model. The calibration yielded different parameters that were inline with the other models
and helped us better the pricing accuracy by decreasing the RMSE to 3,78%.

Due to the multi-fractality behaviour spotted in the last analysis, one might try to use a
multi-fractal model in the future to incorporate the changing dynamics of crypto-currency.

7.5 An evolving risk management framework

June 2021, the Basel committee have issued a new proposal of regulation for the crypro-
currency market. This proposal was rich for tokenized assets and cryptocurrencies with
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efficient stabilization system yet was to restrictive for other cryptoassets including Bit-
coin and Etherium and would result in non involving banks and financial institutions in
this emerging market. A proposal including several improvements has been presented by
the financial associations. Those improvements concerned group 2 cryptoassets that in-
cluded Bitcoin and Coins with sufficient liquidity. Using VaR and CVaR measures we were
able to confirm that the proposal of ISDA and other institutions regarding the prudential
treatements of cryptoassets actually made sense.

7.6 Conclusion and future work

Cryptocurrency market is a gold mine for people investing in it. Large institutions like
banks, hedge funds or insurance companies are showing so much interest in this emerging
market as they want a piece of the cake of these phenomenal returns during the last ten
years. However these returns come with a price: volatility and unpredictability of the price
which can make those institutions insolvent in a blink of an eye if they cannot manage
the cryptocurrency risks. In the scope of this project, we try to understand this new-born
market in order to hedge its multiple risks. We showed that complex models that include
stochastic volatility and jumps are needed to fit the volatility surface. We also showed that
the market exhibits a fractal behaviour and therefore a rough stochastic model should be
used to better model the underlying price and variance. Studying the current regulations,
we can see that is too restrictive and can’t actually help banks get involved in crypto-
currency in order for them to bring some order to this market. Using our last model, we
were able to confirm the need for new regulation as proposed by the financial associations
in September 2021. We can also confirm that the basel committee is providing new less
restrictive regulations while trying to monitor cryptocurrecies risk. Vast improvements are
being done to integrate this emerging market however the work is not yet done.
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Notes de synthese

8.1 Introduction

L’histoire des crypto-actifs remonte a la création du bitcoin par ”Satoshi Nakamoto” en
2008. Depuis, la technologie blockchain et les crypto-monnaies ont suscité l'intéret de
nombreux investisseurs. L’apparition d’options et de contrats a terme sur le bitcoin dans
les marchés de produits dérivés sur les crypto-monnaies a annoncé le début d’une nouvelle
époque dans la couverture du risque lié au prix du bitcoin. Les options et les contrats
a terme offrent une certaine liberté pour négocier et couvrir efficacement les fluctuations
volatiles du prix de I'actif. Contrairement a d’autres marchés financiers, peu de recherches
ont été faites sur ce marché en pleine croissance, ce qui représente un obstacle majeur
pour les institutions qui veulent investir ou qui investissent déja dans le bitcoin comme
Grayscale, Ark Invest, Tesla.... Dans le cadre de ce mémoire, nous étudions la dynamique
des crypto-actifs afin de mieux couvrir le risque d’investir dans ce marché. Nous allons
calibrer différents modeles stochastiques a 'aide des prix des options du marché afin de
mieux pricer les instruments sur le Bitcoin et comprendre sa dynamique.

8.2 Le marché des crypto-monnaies

Acteurs du marché des crypto-monnaies Les acteurs du marché des bitcoins sont:
les mineurs qui sont des participants cruciaux qui vérifient la validité des transactions
en bitcoins par le biais de la "proof-of-work” et sont récompensés en bitcoins, les inves-
tisseurs et les traders de détail, les investisseurs et les traders institutionnels
qui ont considérablement augmenté leur adoption ces dernieres années, les hedge funds
et les quant traders des grandes banques d’investissement (JP Morgan, Goldman Sachs,
etc.) menant la danse. Corporations et Bourses qui agissent comme un intermédiaire
de marché entre deux parties. Celles qui veulent acheter et celles qui veulent vendre.
Leurs frais sont minimes par rapport a d’autres marchés, mais elles controlent les crypto-
monnaies, ce qui peut entrainer des risques de sécurité élevés. Parmi les bourses les plus
importantes, on trouve le Chicago CME, Coinbase, Deribit, d’oul proviennent nos données
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sur les options, qui sont des options vanilles de style européen. Les frais sont négligés car
ils sont minimes.

Le prix du bitcoin Le bitcoin est en fait rare, ce qui signifie qu’il n'y aura jamais plus
de 21 millions de bitcoins. Il est immunisé contre les mesures d’assouplissement quantitatif
et autres mesures inflationnistes et peut étre plus facile a transporter, a stocker et a diviser.
Le prix est déterminé par l'offre et la demande. Le bitcoin est échangé 24 heures sur 24,
7 jours sur 7, et il n’y a donc pas de cours de cloture. Sa valeur est déterminée par une
moyenne mobile. Enfin, le niveau de l'offre et de la demande peut varier d’un exchange a
I’autre. Il est difficile pour les traders d’arbitrer les différences entre les différents exchanges
en raison des frais élevés.

Liquidité : Ecart bid-ask et volume La liquidité explique la facilité avec laquelle un
actif particulier peut étre échangé sans altérer la stabilité de son prix. Nous pouvons voir
dans la fig 2.3 que le volume d’échange moyen sur 50 jours pour les options sur bitcoin
est de 639 millions de dollars, ce qui ne représente rien comparé au SP500 ou le volume
d’échange moyen sur 50 jours dépasse 60 milliards de dollars.

Un volume d’échange plus important signifie une plus grande activité commerciale et est
donc un indicateur fort d’'un marché liquide. L’écart bid-ask est la différence entre les
prix du carnet d’ordres auxquels les agents du marché sont préts a vendre ou a acheter un
produit dérivé. Comme nous pouvons le voir dans la fig 2.5 du rapport, ’écart pour une
option d’achat presque a la monnaie est de pres de 1300 ;bp, ce qui est considéré comme
énorme par rapport au marché For-ex ou ’écart de 'EUR/USD ne dépasse pas 5 ;bp. Si
un nombre représente un prix valide pour un titre, alors il doit y avoir des parties sur
le marché prétes a négocier le titre a ce prix. Pour améliorer la précision des prix, nous
pouvons vouloir augmenter la taille des ordres. Cependant, a un moment donné, ’ordre
deviendra si important qu’il affectera le prix. L’écart dimunue alors que le prix est faussé.
Cette qualité a été soulignée pour ressembler au principe d’incertitude d’Heisenberg en
mécanique quantique.

Les frais de transaction Lorsque on fait du trading a court therme, les frais de transac-
tion peuvent rendre une stratégie gagnante a une stratégie a rendement négatif. Par-contre,
dans ce projet, nous avons décidé de négliger les frais de transaction pour simplifier le pro-
cessus de modélisation.

8.3 Modélisation du marché des crypto-monnaies

Pour mieux comprendre le marché. Nous avons commencé a explorer certains des modeles
les plus connus en les complexifiant au fur et a mesure si nécessaire.
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8.3.1 Black & Scholes

Hypotheses Le modele Black-Scholes repose sur des hypotheses fortes comme efficience
du marché et le fait que les rendements du sous-jacent sont gaussiens, stationnaires et
indépendants. Le taux d’intérét utilisé est le taux sans risque pour le USD et les frais de
transactions ont été négligé pour simplifier la modélisation.

Le modele mathématique et la surface de volatilité Le processus de prix dans le
modele de Black et Scholes suit cette dynamique :

%St = pdt + odW; for p,o0 >0 (8.1)

t

En utilisant la formule d’Ito, nous pouvons déduire la fonction de prix des options vanille
Cps et d’autres dérivés. Le véritable objectif de ce modele est d’étudier la volatilité
implicite des options du bitcoin. Etant donné que la fonction de prix des options vanille
dans le modele de Black et Scholes est bijective, nous pouvons l'inverser pour obtenir la
volatilité a partir des prix du marché. Pour résoudre ce dernier probleme d’inversion, deux
méthodes numériques ont été utilisées : La méthode de Newton-Ralphson et la méthode
de bisection. Cependant, I’algorithme de Newton-Ralphson a été plus rapide a converger
puisqu’il n’a pas nécessité plus de 5 ou 6 itérations. On peut voir les différentes surfaces
interpolées a ’aide de la méthode des splines cubiques dans la fig. 3.1 dans le rapport.

Interprétation Nous observons les mémes caractéristiques dans un marché standard.
Le smile est du a plusieurs raisons. La plus importante est probablement l'offre et la
demande. Par exemple, sur le marché des changes, le smile est symétrique. Nous pouvons
en voir une nuance dans 3.1 sur le 17 aout. Pour le bitcoin, cela s’explique par le fait que
de nombreux investisseurs utilisent les options sur bitcoin a la fois pour couvrir le risque
et pour spéculer, de sorte qu’ils peuvent parfois étre intéressés a la fois par des calls ITM
et des puts OTM. En regardant la méme figure mais en 30 juillet, la surface de volatilité
présente un fort skew tout comme le marché equity et cela est dii au fait que les investisseurs
doivent se protéger contre les grandes baisses puisque le prix du bitcoin a connu une énorme
chute a la fin du mois de juillet spécifiquement, ils obtiennent donc des options de vente
protectrices pour couvrir ce risque. Pour le deuxieme ensemble de données. L’asymétrie de
la volatilité implicite est assez apparente. Cela suggere que la demande d’achat d’options
d’achat hors de la monnaie et d’options de vente dans la monnaie a considérablement
augmenté, non seulement pour couvrir le risque lié au prix du bitcoin, mais aussi pour
spéculer sur son augmentation. Finalement, a ’approche de I’échéance des options, les
volatilités implicites ont augmenté a plus de 180 % pour certains jours. Par conséquent,
I'interprétation appropriée de 'augmentation des volatilités implicites est la demande pour
ces strikes..

Conclusion En examinant les propriétés du smile de volatilité du bitcoin, 'existence
d’une asymétrie de la volatilité implicite ressemble a I’asymétrie des marchés de commodités
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classiques plutot qu’a celle des marchés equity. On peut en conclure que le Bitcoin pourrait
appartenir a la classe commodité. L’utilisation du modele BS a montré qu’il faut ajouter
des sauts pour capter les variations brusques du pris et de rendre la volatilité stochastique
pour pouvoir capter la dynamique de la volatilité.

8.3.2 Le modeéle de Merton

Hypotheses Le modele repose sur les hypotheses du modele du Black-Scholes. Le taux
d’intéret utilisé est le taux sans risque pour le USD et les frais de transactions ont été
négligé pour simplifier la modélisation.

Le modele mathématique La dynamique du processus de prix est donnée par :

{ dXt = ,Ltdt + O'th + JdNt
h(X:) = exp (Xy) = S

ol o et p sont des constantes et les tailles de saut sont normales Vi, J; ~ N (m,d?).
Soit donc Q); = vaztl J; un processus de Poisson composé décrivant le processus de saut.
Pour les options vanille, nous disposons de formules de prix explicites, ce qui facilite la
calibration. Nous devons calibrer les quatre parametres du modele, a savoir la volatilité
o, le parametre d’occurrence des sauts A, la moyenne et la variance de la taille des sauts
m et §%2. Le processus s’effectue par le biais d'un probléme d’optimisation simple résolu
par la programmation quadratique séquentielle des moindres carrés (SLSQP) développée
par (Kraft, 1988) et déja mise en ceuvre dans le paquet Python’s scipy. Les résultats sont
présentés dans 3.2.

Résultats et conclusion Le modele de diffusion a saut de Merton a permis de trouver le
prix des options vanille avec une erreur quadratique moyenne relative de 14,89 %. Comparé
au modele Black-Scholes, le modele de Merton a pu reproduire d’une certaine maniere le
smile de volatilité comme nous le voyons dans 3.3. La force des processus de diffusion
et saut est qu’ils s’adaptent aux asymétries a court terme qui sont généralement plus
prononcées puisque l'ajout de sauts capture les variations soudaines dans un futur proche.
La volatilité est constante par rapport au temps. Un modele de Heston sera alors utilisé
pour capter la dynamique de la volatilité .

8.3.3 Volatilité stochastique

Le modele mathématique Soit S; le processus de prix et V; le processus de volatilité.
La dynamique du modele de Heston est décrite comme suit.

dS, = pSydt + V.S dW >

AV, = k (v — V) dt + o/VedW," (8.2)
d <W§S>, W§V>> = pdt
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Le terme de drift dans la dynamique de la volatilité est a retour a la moyenne lorsque
k > 0, avec v étant le niveau moyen a long terme de la variance. En fait, si au temps ¢ le
processus V; est supérieur a 6, le terme de dérive poussera la valeur du processus vers le
bas.

Calibration du modele

La calibration du modele de Heston est plus délicate que celle des autres modeles. Tout
d’abord, il y a 5 parametres a calibrer et la fonction objectif n’est pas connue pour étre
convexe. Une complexité supplémentaire est ajoutée par la suite en raison de la dépendance
de certains parametres. En fait, o et k se compensent, ce qui peut étre dia au fait que la
fonction objectif est plate pour atteindre 'optimum.

Comme les autres modeles, nous allons essayer de minimiser la différence entre le prix
d’une option vanille et celui que 'on trouve sur le marché. Nous utilisons des équations
(Cui et al., 2016) car il a simplifié le probleme d’optimisation. Pour le résoudre, nous avons
utilisé la méthode de Levenberg-Marquardt. La méthode LM est un outil typique pour
résoudre un probleme de moindres carrés non linéaires, L’étape de recherche est donnée
par: A = (JJT + ,uI)_1 V f En ajustant p, la méthode passe de la méthode de descente
du gradient a la méthode de Gauss-Newton.

Résultats et conclusion En examinant la corrélation entre le prix des actions et la
volatilité, nous pouvons voir que, contrairement a de nombreuses études empiriques qui
ont documenté une corrélation négative entre le prix des actions et les processus de volatilité
(Black, 1976). Dans le cas du bitcoin, le parametre de corrélation p est positif car il y a un
nombre plus élevé de call OTM profonds pour la spéculation. Le parametre positif pourrait
également indiquer la présence d'un comportement de noise trading car ’augmentation de
la volatilité attire les traders a court terme et donc le prix augmente. Nous avons utilisé
le modele pour déterminer le prix de nos options. Dans ’ensemble, le modele de Heston
a donné de meilleurs résultats que les modeles précédents. L’erreur quadratique moyenne
relative du modele de volatilité stochastique est de 11,84 % pour les 30° de juillet et de
9,76 % pour les 18° d’aout. En utilisant les prix de Heston, nous avons dérivé la surface
de volatilité implicite dans la fig. 3.6. Dans I’ensemble, le modele reproduit la surface de
volatilité, mais ses performances sont mauvaises pour les échéances courtes. Pour résoudre
ce probleme, on peut ajouter des sauts a un modele de volatilité stochastique.
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8.3.4 Volatilité stochastique avec co-sauts
Le modele mathématique

Soit S; le processus de prix et V; celui de la volatilité, la dynamique du SVCJ est la suivante

dlog Sy = pdt + /V,dW® + ZVdN,
AV, = k (0 — V) dt + oy /VidW") + ZvdN,
d <W§S>, Wt(V>> — pdt
P(dN;, =1) = \dt
N, est un processus de saut avec un taux moyen constant d’arrivée par saut moyen constant

A. Les tailles de saut aléatoires sont Z7, Z/. Nous supposons que la taille des sauts
aléatoires Z} conditionnelle & Z; est

(8.3)

ZY | 27 ~ Ny + piZi0y) s 2~ exp ()

Résultats et conclusions

Suivant (Hou et al., 2020), la calibration est effectuée a 'aide des méthodes de Monte
Carlo a chaine de Markov (MCMC). Le processus de calibration a donné les parametres du
tableau 3.1. Le modele SVCJ s’adapte bien aux données et la significativité des parametres
de saut explique relativement la nécessité de ce modele. L’évaluation des options vanilles
sur crypto-monnaies est effectuée a l'aide de simulations Monte Carlo brutes en utilis-
ant: EQ [e‘T(T_t)C’(T) | ]-"t}. Comme prévu, le modele SVCJ a surperformé les modeles
précédents avec un RMSE de 8,12 %. Nous avons pu reproduire la surface de volatilité
du SVCJ dans la fig 3.8. Finalement,nous pouvons voir que ce modele représente bien la
surface de volatilité et nous pouvons observer grace a la surface d’erreur que nous avons
relativement résolu le probleme d’ajustement du skew a court terme du modele de Heston.
Le prix du Bitcoin est un peu régi par le noise trading. Ce qui nous fait penser qu’il
pourrait avoir un comportement fractal. Dans la section suivante, nous étudions cette
hypothese.

8.4 Les crypto-monnaies : Un modele rugueux s’impose

Les crypto-monnaies et ’hypothése du marché fractal (FMH) L’hypothese de
Pefficience des marchés implique que le processus de prix reflete toutes les informations
disponibles et qu’il est donc impossible pour les acteurs du marché de surperformer

systématiquement le marché sur une base ajustée au risque. Dans son livre, Peters a exposé
une nouvelle théorie basée sur des études empiriques des différents marchés : L’hypothese
du marché fractal (FMH). Cette théorie stipule que le marché contient de nombreux in-
vestisseurs ayant des horizons d’investissement différents et des ensembles d’informations
différents. Les investisseurs ayant un horizon a plus long terme fondent leurs décisions sur
des informations fondamentales, tandis que les investisseurs a plus court terme se fient aux
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aspects techniques. Cette structure fournit de la liquidité aux différents agents, ce qui rend
le marché stable. En période de turbulence, les horizons d’investissement et les ensembles
d’informations s’uniformisent, ce qui asseche la liquidité et fait grimper la volatilité, attir-
ant ainsi davantage d’investisseurs a court terme et de traders de bruit.

Preuve du comportement fractal des crypto-monnaies

Pour capter la structure fractale du marché, nous utilisons l’analyse multi-fractale et
I’analyse en ondelettes continues.

L’analyse MF-DFA est utilisée pour mesurer 'exposant de Hurst général h(q). Pour ¢ = 2,
h(2) correspond a 'exposant de Hurst déja bien connu H Si h(2) < 0,5, la série temporelle
est anti-persistante et si h(2) > 0,5, elle est persistante. Pour h(2) = 0.5, la série tem-
porelle devient une marche aléatoire. En utilisant cette méthode pour le prix et la volatilité
journaliere du bitcoin que nous avons tracé 4.1. Nous pouvons déja voir un comportement
multi-fractale car H dépend de g. Pour les données de prix, H est égal a 0,56. Cela signifie
que la courbe du prix du bitcoin montre une persistance en général. En examinant les
données 1-min, nous remarquons un coefficient de 0,3 qui montre une certaine réversion de
la moyenne et un état turbulent du marché pour les 10 derniers jours de septembre. En ex-
aminant le processus des prix pendant cette période, nous pouvons constater un caractere
de retour a la moyenne et une légere augmentation de la volatilité historique. En appli-
quant la méme analyse aux données annuelles. Nous remarquons que pour chaque année
un comportement multi-fractal est capturé. Nous pouvons également voir que certaines
années présentent une anti-persistance. Par exemple, 'année derniere, le processus des
rendements quotidiens montre une certaine rugosité, ce qui est cohérent avec les grandes
variations de prix que le bitcoin a connu et sa sensibilité aux événements externes et aux
nouvelles du marché, ce qui implique la dominance des horizons de négociation a court
terme. Un parametre de Hurst variable, fig 4.3, suggere également que la dynamique du
prix des bitcoins varie au fil du temps et qu'un modele plus général devrait étre utilisé pour
capturer ce comportement. En appliquant I’analyse multifractale a la volatilité historique,
nous voyons qu’elle présente également un comportement multifractal. L’exposant de Hurst
est inférieur a %, ce qui est cohérent avec les résultats observés empiriquement pour d’autres
actifs. Ces résultats soutiennent 1'utilisation d'un modele de volatilité rugueuse.

Analyse en ondelettes

La force de I'analyse en ondelettes est sa capacité a visualiser I'information du prix dans les
domaines fréquentiel et temporel, fournissant ainsi des informations sur I’évolution des prix
a différentes échelles de fréquence et de temps. Selon les arguments du FMH, nous devrions
observer une augmentation de la puissance a basse échelle ou a haute fréquence pendant
les périodes critiques. En observant la fig. 7?7, nous pouvons confirmer ces hypotheses. De
plus, nous observons une modification de la structure de la variance a travers les fréquences
avant les turbulences en raison de la variation de la structure de ’activité des investisseurs.
Une puissance (volatilité) importante et significative est détectée aux hautes fréquences
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confirmant, ainsi, la dominance du trading a haute fréquence.

8.5 Modele de volatilité rugueuse

En raison du comportement fractal repéré dans la partie précédente. Nous avons utilisé le
modele rough de Heston décrit comme suit :

dlog S, = pdt + /V,dW®

NVi = &ot) + w7y Jo (= )" 2V VodWs” (8.4)

d <W§S), Wt(V>> — pdt

ouv>0,H¢€ (O, %) Le caractere rugueux est da au le noyau (¢t — S)H_%. Soit = H + %
Et ou &(t) = E[V;],t > 0, ce qui signifie que la courbe initiale de variance avant est
une entrée. Nous avons commencé par simuler le modele de prix et de volatilité a 'aide de
diverses techniques de simulation du mouvement brownien fractal. Cela nous a permis de
créer une image d’un marché alimenté a I’aide de ce modele et de créer ainsi des surfaces de
volatilité qui seraient utilisées pour former un réseau neuronal Feed-forward. En utilisant
ce réseau neuronal formé, nous avons pu calibrer notre modele. La calibration a produit
différents parametres qui étaient en ligne avec les autres modeles et qui nous ont aidés a
améliorer la précision des prix en diminuant le RMSE & 3,78%. En raison du comportement
de multi-fractalité repéré dans la derniere analyse, on pourrait essayer d’utiliser un modele
multi-fractal a I’avenir pour intégrer la dynamique changeante des crypto-monnaies.

8.6 Une réglementation en pleine évolution pour les
crypto-actifs

Juin 2021, le comité de Bale a émis une nouvelle proposition de réglementation pour le
marché des crypto-monnaies. Cette proposition était riche pour les actifs tokenisés et
les crypto-monnaies avec un systeme de stabilisation efficace mais était trop restrictive
pour les autres crypto-monnaies dont le Bitcoin et I'Etherium et aurait pour conséquence
de ne pas impliquer les banques et les institutions financieres dans ce marché émergent.
Une proposition comprenant plusieurs améliorations a été présentée par les associations
financieres. Ces améliorations concernent les cryptoactifs du groupe 2, qui comprennent le
Bitcoin et les Coins ayant une liquidité suffisante. En utilisant les mesures de la VaR et
de la CVaR, nous avons pu confirmer que la proposition de 'ISDA et d’autres institutions
concernant les traitements prudentiels des crypto-actifs avait effectivement du sens.
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8.7 Conclusion et travaux futurs

Le marché des crypto-monnaies est une mine d’or pour les personnes qui y investissent. Les
grandes institutions comme les banques, les fonds spéculatifs ou les compagnies d’assurance
s'intéressent de pres a ce marché émergent car elles veulent une part du gateau des rende-
ments phénoménaux de ces dix dernieres années. Cependant, ces rendements ont un prix
. la volatilité et I'imprévisibilité du prix qui peuvent rendre ces institutions insolvables en
un clin d’ceil si elles ne peuvent pas gérer les risques liés aux crypto-monnaies. Dans le
cadre de ce projet, nous essayons de comprendre ce marché naissant afin de couvrir ses
multiples risques. Nous avons montré que des modeles complexes qui incluent la volatilité
stochastique et les sauts sont nécessaires pour ajuster la surface de volatilité. Nous avons
également montré que le marché présente un comportement fractal et que, par conséquent,
un modele stochastique rough doit étre utilisé pour mieux modéliser le prix et la vari-
ance sous-jacents. FEn étudiant les réglementations actuelles, nous pouvons voir qu’elles
sont trop restrictives et qu’elles ne peuvent pas réellement aider les banques a s’impliquer
dans les crypto-monnaies afin de mettre de I'ordre dans ce marché. En utilisant notre
dernier modele, nous avons pu confirmer la nécessité d’'une nouvelle réglementation telle
que proposée par les associations financieres en septembre 2021. Nous pouvons également
confirmer que le comité de Bale fournit de nouvelles réglementations moins restrictives tout
en essayant de surveiller le risque des cryptocurrences. De grandes améliorations sont en
cours pour intégrer ce marché émergent mais le travail n’est pas encore terminé.
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