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Background and Motivation

Individuals have increasing responsibility to manage their own longevity risk

Global trend of moving from defined benefit (DB) to defined contribution (DC) pension
plans (Willis Towers Watson, 2018)

Thin life annuity markets in Australia and worldwide and so-called annuity puzzle
(Modigliani, 1986)

Demand Side: high loadings, bequest motives, liquidity and loss aversion (Brown, 2009);
Supply Side: low interest rates, interest rate risk, longevity risk, limited ability to hedge
longevity risk (Evans and Sherris, 2010)

Innovation required in longevity risk product design to:

Change focus from insurance product (life annuity) to investment product (bond) for
individual longevity risk

Allow flexible selection of bond income level and principal repayment as a death benefit
(bequest motive)
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What we do

Present the financial engineering valuation and immunizing framework for a new
individual longevity bond, fully collateralized with government bonds

Calibrate and apply recent state-of-the-art continuous-time AFNS interest rate and
mortality models for systematic mortality risk (Blackburn and Sherris, 2013;
Xu et al., 2019; Huang et al., 2019)

Apply immunization theory with linear programming and a mean-absolute deviation
constraint (Liu and Sherris, 2017)

Compare and assess immunized bond portfolios (coupon bonds and annuity bonds) for
the individual longevity bonds with Australian government bonds

Price aggregate mortality risk using Australian population mortality to determine bond
price loadings, and quantify natural hedging in bond design.
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Longevity Bond Designs - Basis Bonds

Lifetime coupon and principal bond (LCP Bond)

Monthly coupon payments while alive: SLCP = rc
12 ×DLCP

Full principal return on death: DLCP
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Lifetime annuity income bond (LAI Bond)

Monthly coupon payments while alive: SLAI

No principal return on death: DLAI = 0
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Longevity Bond Designs - Flexible Bond

Flexible lifetime income and capital bond series W% (Flexible LIP BondW )

W% of Lifetime coupon and principal bond (LCP Bond)

(100 −W )% of Lifetime annuity income bond (LAI Bond)

Survival Benefit: SW = W% · SLCP + (1−W%) · SLAI ,

Death Benefit: DW = W% · DLCP + (1−W%) · DLAI

= W% · D1.
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Interest Rate Risk - Arbitrage-Free Nelson-Siegel Model

Arbitrage-Free Nelson-Siegel model (AFNS) with Level (L) , Slope (S) and Curvature (C)
Factors (Christensen et al., 2011). Widely used model with both theoretical and empirical
strengths.

Yield to maturity (affine in factors)

y(t,T ) =Lt + St

(

1− e−δ(T−t)

δ(T − t)

)

+ Ct

(

1− e−δ(T−t)

δ(T − t)
− e−δ(T−t)

)

−
A(t,T )

T − t
,

=−
B(t,T )⊤

T − t
Xt −

A(t,T )

T − t
.

where Xt = (Lt ,St ,Ct)
⊤. The present value factor for pricing (affine in risk factors):

D (t,T ) = e−(T−t)y(t,T ) = eB(t,T )⊤Xt+A(t,T ),

Calibrated to Australian daily zero-coupon interest rates from 1992 to 2018, source - Reserve Bank of
Australia, using Kalman filter and MLE. 6/26



Interest Rate Risk - Arbitrage-Free Nelson-Siegel Model

Yield curve is consistent with and derived from the dynamics of the risk factors. Yield curve
parameters determined from the fitted factor parameters and satisfy an arbitrage-free
requirement. Dynamics for the factors - follow stochastic differential equation (SDE):

dXt = KQ
[

θQ(t)− Xt

]

dt +ΣdWQ
t ,

dXt = KP
[

θP(t)− Xt

]

dt +ΣdW P
t ,

where Xt = (Lt ,St ,Ct)
⊤,

KQ =





0 0 0
0 δ −δ
0 0 δ



 ,KP





kP11 0 0
0 kP22 0
0 0 kP33



 ,Σ =





σ11 0 0
0 σ22 0
0 0 σ33



 .

Continuous time equivalent of auto-regressive time series model. P and Q measures differ by
price of risk dWQ

t = dW P
t + Λtdt,Λt = λ0 + λ1Xt .
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Interest Rate Risk - AFNS Interest Rate Model Goodness of Fit
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Figure 1: Empirical and Estimated Mean Yield Curves.
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Interest Rate Risk - Yield Curve Simulation Results
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Figure 2: Mean One-Month Yield-to-Maturity with the 25%, 75%, 0.5%, and 99.5% Quantiles of 20000
Simulations. 9/26



Longevity Risk: AFNS Mortality Model

Mortality model is a consistent affine continuous time AFNS mortality with factors for Level
(L), Slope (S) and Curvature (C). (Blackburn and Sherris, 2013; Xu et al., 2019;
Huang et al., 2019)

y(t,T ) −→ µ(t,T )

θP(t) −→ 0

The survival probability of individual age x from t to T is:

S (t,T ) = e−(T−t)µ(t,T ) = eB(t,T )⊤Xt+A(t,T )

Data: Australian male mortality for cohorts born from 1856 to 1907, obtained from Human
Mortality Database. Fitted with Kalman filter and MLE.
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Longevity Risk: AFNS Mortality Model

Model is an age-cohort for Australian male mortality using 1856 to 1907 cohorts with full
observations of cohort mortality rates from age 65 to 110. Calibrated to historical data.

Figure 3: Australian Cohort Average Force of Mortality for Males Born between 1856 and 1907, from
Age 65 to 110. 11/26



Longevity Risk: AFNS Mortality Model

Figure 4: Residuals of the AFNS Mortality Model.
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Longevity Risk: AFNS Mortality Model
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Figure 5: Factor Loadings of the AFNS Mortality Model.
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AFNS Mortality Model Goodness of Fit
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Figure 6: MAPE of the Survival Curve of the AFNS Mortality Model.
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AFNS Mortality Model - Force of Mortality Simulation
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Figure 7: Mean of the Average Forces of Mortality with the 25%, 75%, 0.5%, and 99.5% Quantiles of
20000 Simulations. 15/26



Bond Pricing and Immunization

We assess individual longevity bonds issued to an Australian male aged 65 on
01/Jan/2019 with year of birth 1954, and maximum attainable age 110. So that the
modeling period is from 2019 to 2064.

For illustration bonds are assumed to have an annual coupon rate of rc = 2% paid
monthly and all bonds are priced to be 100 at issue.

Bonds are priced as discounted expected present value of the monthly cash flows paid on
survival and death using the AFNS interest rate and mortality models.

Mortality assumptions for the individual bonds are based on aggregate population
mortality - in practice this is adjusted for adverse selection - expect higher mortality than
aggregate for LCP Bond and lower mortality than aggregate for LAI Bond.

With bequest motives, expect most individuals to select a flexible mix so that adverse
selection is limited and mitigated by natural hedging in the individual longevity bond cash
flows.
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Individual Longevity Bond Expected Cash Flows
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Figure 8: Expected Cash Flows 20000 Simulations, rc = 2%.
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Immunization - Government Bond Portfolio

Immunized portfolio determined using linear programming:

Net Portfolio Cash Flow (NP) = Asset Cash Flow− Liability Cash Flow

max
ω

(ConvNP)

subject to:

DurNP = 0,

ValueNP =
∑

t

nt = 0,

∑

t>0

nt × (t − h)+ ≤ 0, for all positive h,

where

nt =
∑

i

ωi × EPV (CFi ,t)− EPV (CFLB,t).
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Government Bonds in Immunizing Portfolio - Coupon Bonds and Annuity

Bonds

Coupon Bonds:

Australian government coupon bonds - TTM 1 to 29 years

Annuity Bonds:

Based on NSW government Waratah annuity bonds, Monthly inflation-indexed payments,
with existing:TTM 3 to 5 years

Hypothetical Bonds: Issued in Jan 2019 with TTM of 5, 10, 15, 20, 25, 30, 40 years and
monthly fixed annuity payments.
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Individual Longevity Bonds - Duration, Convexity and VaR

Table 1: Duration, Convexity and VaR.

Price Fisher Dur Fisher Conv VaR0.5%

Lifetime coupon and
principal bond

100 14.70 298.44 -26.47%

Lifetime annuity in-
come bond

100 10.37 165.82 -14.71%
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Immunized Bond Portfolios - Coupon Bonds compared with Annuity Bonds

Lifetime Coupon and Principal Bond:
Assets and Liability Cash Flows using CB
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Immunized Bond Portfolios - Coupon Bonds compared with Annuity Bonds

Lifetime Coupon and Principal Bond:
20000 Simulated Distribution of the Portfolio Surplus at t = 46
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Lifetime Annuity Income Bond:
20000 Simulated Distribution of the Portfolio Surplus at t = 46
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Figure 10: Final Year Surplus Distribution of Individual Bonds, Portfolio Immunized with only Coupon
Bonds and only Annuity Bonds.
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Immunized Bond Portfolios - Coupon Bonds compared with Annuity Bonds

Table 2: Comparison of Final Year Surplus Distribution VaR0.5%.

Individual Bonds Immunized with CB Immunized with AB

VaR0.5%(LCP Bond) -26.47% -0.95% -0.89%
VaR0.5%(LAI Bond) -14.71% -9.92% -9.91%

For the immunized portfolios, the VaR can be used to determine the price loading for
systematic longevity risk and the residual interest rate risk.

Based on final year surplus, for the LCP Bond a loading of approximately 1% and for the
LAI Bond a loading of approximately 10% and the Flexible Bonds a weighted average of
these.

Benefits of natural hedging in the LCP Bond are significant.
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Pricing Systematic Longevity Risk - Capital Requirements for SPV

The capital requirements for systematic longevity risk under Solvency II, based on the standard
formula for SCR :

SCRt := NAVt − (NAVt |Mortality Shock 0.5%),

0

CoC × SCR0

1

CoC × SCR1

2

CoC × SCR2

45

CoC × SCR45

We quantify the cost of longevity risk with risk margin (RM):

RM =
∑

t=0

CoC × SCRt × D(0, t), where CoC = 6% under Solvency II.

Capital requirement as a proportion of the premium to cover the RM:

Loading =
RM

Price
.
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Pricing Systematic Longevity Risk - Risk Margin and Loading

Table 3: Loading for LCP Bond and LAI Bond based on CoC and Regulatory Capital

LoadingCB LoadingAB

Lifetime Coupon and Principal Bond (W=100) 5.08% 5.02%
Lifetime Annuity Income Bond (W=0) 6.88% 6.87%

Flexible individual longevity bond loadings are a weighted average of these two bond
loadings.

Benefits of natural hedging lower for CoC and Regulatory Capital compared to final year
surplus.

If loadings in practice reflect Regulatory Capital then LCP Bond more profitable based on
final year surplus distribution.
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Summing Up

Proposed and assessed a longevity bond for individuals as a post-retirement investment
product not currently available in the market:

Flexible structure allowing for bequest and liquidity preferences with built-in natural hedging

Priced using state-of-the-art financial engineering for interest rate and mortality risk

Immunized with a fully collateralized government bond portfolio

Presented and calibrated AFNS interest rate and mortality models with Australian data,
used for pricing and simulation.

Quantified the effectiveness of the immunizing bond portfolio using net cash flow and
portfolio surplus - coupon bonds as effective as annuity bonds.

Quantified and priced the longevity risk using final year surplus and Regulatory Capital to
assess required bond price loadings for the individual bonds.
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