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Introduction



Copulas Basics

Suppose that X is a (continuous) random vector of dimension d

with c.d.f F and marginals c.d.f (Fi )i∈{1,...,d}. Then Sklar’s

theorem [6] gives us the copula of X as :

C (u) = F
(
F−1

1 (u1), ...,F−1
d (ud)

)
• C is a c.d.f with uniform margins on [0, 1].

• It characterises the dependence structure of F in the sense

that F is completely characterised by C and the Fi ’s.

The estimation of the copula is a wide-treated subject: there exists

a lot of parametric distributions that can be fitted. Some

non-parametric models exists but are facing problems in high

dimensions.
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Density estimation trees

In regression, the CART algorithm from Breiman [3] selects a

covariate and a univariate breakpoint, minimizing a loss, and

assign to each leaf the mean response inside the leaf.

In density estimation, the DET from Ram and Gray [4] selects a

dimension and a breakpoint minimizing a loss, and assign to each

leaf the frequency of observations:

f (x) =
∑
`∈L

f`
λ(`)

1x∈`

• What loss can we use ?

• Will this yield a copula if applied to pseudo-observations ?
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Piecewise linear copulas



Definition

Let I = [0, 1]d be the unit hypercube and L a partition of I.

Definition (Piecewise linear copula)

Let the piecewise linear copula be defined by its distribution

function:

∀u ∈ I, Cp,L(u) =
∑
`∈L

p`λ`(u)

• λ`(u) = λ([0,u]∩`)
λ(`) where λ is the lebesgue measure.

• p is a vector of weights summing to one.

Corresponding density : cp,L(u) =
∑̀
∈L

p`
λ(`)1u∈`
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Copula constraints

We restrict the leaves in L to be hyperboxes of the form [a, b].

Property (Copula constraints are linear in the weights)

Cp,L is a proper copula

⇐⇒

p ∈ CL = {p ∈ R|L| : Bp = g and p ≥ 0}

B1 = (λ`i (ui ))(i,u)∈{1,...,d}×ML, `∈L (size nd × |L|)

B2 = (1)`∈L (size 1× |L|)

g1 = (ui )(i,u)∈{1,...,d}×ML
(size nd)

B = (B1,B2) (size (nd + 1)× |L|)

g = (g1, 1) (size (nd + 1))

Where ML is the set of middle-points of leaves in L. 5/24



Kendall τ , Spearman ρ

Definition

τ = 4

∫
C(u) c(u) du−1, and ρ = 12

∫
C(u)du−3, and K(t) = P(C(U) ≤ t)

Property (Piecewise linear class)

τ = −1 + 2
∑
`∈L
k∈L

d∏
i=1

(bi ∧ di − ai ∧ ci ) (bi ∧ di + ai ∧ ci − 2ci )

+ 2 (di − ci ) (bi − ai ∧ di )

ρ = −3 + 6
∑
`∈L

p`

d∏
i=1

(2− bi − ai )

where we denoted ` = (a, b] and k = (c, d ], ∧ denotes the minimum operator

and γ+ is the upper regularised gamma function.
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The Cort Estimator



An integrated square error loss...

We use the integrated square error between densities.

‖cp,L − c‖2
2 ≈ ‖cp,L‖2

2 − 2 〈cp,L, c〉 (additive indep.)

≈ ‖cp,L‖2
2 −

2

n

n∑
i=1

cp,L(ui ) (MC plug-in)

=
∑
`∈L

p2
`

λ(`)
− 2

∑
`∈L

p`f`
λ(`)

(f = emp. freq)

= p′Ap − 2p′Af (A = diag(λ(`)−1)

= ‖p‖2
L − 2 〈p, f〉L

Where 〈x , y〉L =
∑̀
∈L

x`y`
λ(`) is, indeed, a scalar product.
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... yields a simple quadratic program

The weights p∗ that minimize the integrated square error for a

given partition L are given by the following:

Definition (Quadratic program)

p∗ is the solution to the quadratic program :

arg min
p∈CL

‖p‖2
L − 2 〈p, f〉L

which is the projection of f onto CL regarding ‖.‖2
L.

We denote p∗ = PCL(f) this projection.

Note that without the constraints, p∗ = f.
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Joint optimisation fo the breakpoint and the weights

For a set of dimensions D in P({1, ..., d}), let L(`, x ,D) be the

partition of the leaf ` splitted on a point x in dimensions D, i.e:

L((a, b], x ,D) = ×
j∈D
{(aj , xj ], (xj , bj ]} ×

j∈{1,...,d}\D
{(aj , bj ]} .

Define then the full partition by:

Lx ,D = L \ {`(x)} ∪ L(`(x), x ,D).

We will omit the parameter D if D = {1, .., d}.
Definition (Final optimisation problem)

The global optimisation problem we want to solve is :

arg min
D ∈ P({1,...,d})
x ∈ I
p ∈ CLx,D

‖p‖2
Lx,D − 2 〈p, fLx,D〉Lx,D

9/24



The recursive procedure

1. Solve the density problem:

arg min
D ∈ P({1,...,d})
x ∈ I

−‖fLx,D‖
2
Lx,D

• Find the splitting dimensions D first

• Minimize greedily on x via a non-linear programming solver.

2. Recurse on each ` in Lx ,D by rescaling ` to I and solving the

same problem to obtain the final partition L.

3. Then, with L fixed, solve the projection:

arg min
p ∈ CL

‖p‖2
L − 2 〈p, fL〉L

via a quadratic programming solver, with inital values fL.
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Finding the splitting dimensions D (for U ∼ C)

Hypothesis (Hj)

(Uj ⊥⊥ U−j) |U ∈ ` and Uj |U ∈ ` ∼ U(`j)

Bowman [2] : Suppose that ` = I, containing n obs. of the random

vairable U ∼ F , for F the restriction of C to `, rescaled to I. Then:

Definition (Test statistic)

Denote by f
(n)
f,L the piecewise constant density that will be

estimated on data U1, ...,Un ∼ F , and ej ,n(x) = E(f
(n)
f,L (x)|Hj).

The test statistic is given by :

Ij = ‖ej ,n − f
(n)
f,L ‖

2
2

where L, ej ,n and f
(n)
f,L are stochastic objetcs, depending on U.
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Test procedure

We weakened the test by assuming that the next split is enough to

test Hj . This gives a test procedure as follows:

1. Solve

x∗ = arg min
x ∈ I

−‖fLx‖2
Lx

2. Compute:

Îj =
∑

k∈Lx∗,{1,...,d}\{j}

 f2
k

λ(k)
+

∑
`∈Lx∗,{1,..,d}

`⊂k

(
f2
`

λ(`)
− 2

fk f`
λ(k)

) .

Argument : the cut will be on the same x in dimensions other

than j wheter or not we work under Hj .

3. Compare to a Monte-carlo simulation of its distribution under

the null to exclude the dimension j if necessary.
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Asymptotic behavior



Previous result

Ram and Gray [4] gave the consistency of f
(n)
f,L . Assuming the

maximum diameter of leaves goes to 0 as n goes to ∞, we have :

P
(

lim
n 7→+∞

‖f (n)
f,L − f ‖2

2 = 0

)
= 1.

Denoting q s.t:

∀` ∈ L, q` =

∫
`

c(u)du,

this results writes dL(f, q)2 → 0, a.s.

Furthermore, by construction, q ∈ C.
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Constraint influence

Definition (Integrated constraint influence)

‖c(n)
p,L − f

(n)
f,L ‖

2
2 = dL(p, f)2

This quantity measures how much f and p are far from each other.

But since f is closer and closer to q, which is in the set that f is

projected on to give p, we have :

Property (Asymptotical effect of constraints)

The integrated constraint influence is asymptotically 0.

Proof.

C is convex, closed and non-empty. Hence p = PC(f) exist and is

unique. Since q ∈ C, we have that dL(f, p)2 ≤ dL(f , q)2.
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Cort consistency

Property (Consistency)

For c the density of the true copula, assuming the diameter of

the leaves goes to 0 as n goes to ∞, the estimator c
(n)
p,L is

consistent, i.e :

P
(

lim
n 7→+∞

‖c(n)
p,L − c‖2

2 = 0

)
= 1

Proof.

‖c(n)
p,L − c‖2

2 = dL(p, q)2 and dL(p, q)2 ≤ dL(f, q)2.

15/24



Bagging and cross-validation



A simple forest

In regression : See Breiman [3]

In density estimation, Kernels uses leave-one-out for bandwidths.

Sain, Baggerly and Scot [5] formalized the cross-validation process

for density estimation. The more involved out-of-bag procedure we

propose is inspired by Wu [7].

Definition (Out-of-bag ”density” and metrics)

coob(u) =
1

N(u)

N∑
j=1

c(j)(u)1u was not in the training set of c(j)

Joob(cN) = ‖cN‖2
2 −

2

n

n∑
i=1

coob(ui )

KLoob(cN) =

∫
c(u) ln

(
c(u)

cN(u)

)
≈ −1

n

n∑
i=1

ln(coob(xi ))
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A weighted forest

After fitting the trees c1, ..., cN , we can assign weights to them

minimizing an out-of-bag integrated square error for the forest :

Definition (Out-of-bag ”density” and metrics, weighted

case)

cwoob(u) =
1

W (u)

N∑
j=1

wjc
(j)(u)1u was not in the training set of c(j)

Where W (u) is the sum of wj ’s for trees that did not see u. Then :

Definition (Optimal weights)

w∗ = arg min
w

Joob(cwN )
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Simulation Study



The Cort estimator is implemented in the cort R package, avaliable

on CRAN.

The dataset is as follows :

• Simulation of 200 points from a 3-dimensional clayton copula

with θ = 8 for marginals 1, 3 and 4.

• The second marginal is added as independent uniform draws.

• The fourth marginal is flipped, inducing anticomonotonicity.

Marginals 1, 3 and 4 exibit strong dependency.
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Figure 1: The dataset we will use.



Figure 2: In gray scale, we observe a bivariate histogram of the simulation from the

estimated tree. The small red points represent the input data.



Figure 3: Left : Oob Kullback-leibler and Oob ISE if function of the number of trees;

Right : Constraint influence and L2-Norm in function of weights



Figure 4: Top row: kendall’s taus. Bottom row: Spearman’s rho. Left: empirical

values from burn-in data. Right : values from the fitted models. The size of the

subsamples is in abssissa.



Table 1: Statitics of several models on the Dataset

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged Cort

Kendall Taus

τ1,2 -0.01 0.00 0.02 -0.01 0.00 -0.04

τ1,3 -0.80 -0.75 -0.68 -0.80 -0.78 -0.56

τ1,4 0.78 0.73 0.66 0.78 0.71 0.54

τ2,3 0.03 0.02 0.00 0.02 0.00 0.05

τ2,4 -0.03 -0.02 -0.01 -0.04 0.00 -0.05

τ3,4 -0.78 -0.73 -0.65 -0.77 -0.69 -0.55

Spearman Rhos

ρ1,2 -0.02 0.00 0.02 -0.02 0.00 -0.02

ρ1,3 -0.93 -0.91 -0.87 -0.93 -0.93 -0.72

ρ1,4 0.93 0.90 0.86 0.93 0.87 0.70

ρ2,3 0.04 0.02 0.00 0.04 0.00 0.04

ρ2,4 -0.05 -0.03 -0.01 -0.06 0.00 -0.04

ρ3,4 -0.92 -0.90 -0.85 -0.92 -0.86 -0.71

Bagging Results

KLoob Inf 4.48 3.80 -4.55 -5.15 NaN

23/24



Conclusion



Take away and potential improvements

Some take away points:

• Piecewise linear distribution function are handy models for

copula modeling since the copula constraints have a nice

expression

• Fitting piecewise linear d.f with trees is quite simple and fast

• The main issue is the degree of freedom in weights took away

by the copula constraint.

• Such models can easily be bagged, boosted, cross-validated...
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