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Actuarial modelling

• X characteristics of a policyholder

• N number of claims (E[N | X ] =frequency)

• Y cost of a claim (E[Y | X ] =severity)

Pricing principle = balance (in average) the cost of a policyholder and the commitments of the insurer

º(X) = E[N | X ]E[Y | X ]

• º(X) = premium of the insurance contract of a policyholder with characteristics X

• Common assumption: Y and N are independent given X

Reserving = Need to estimate the whole conditional distribution of N and Y given X
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Extreme claims

• Risk management

• Extreme event: some value exceeds a (high)
threshold

• Lack of data and/or historical information

• Present some heterogeneity

) Evaluating the potential cost of extreme risks is a challenging task
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Objectives of the presentation

Main goals

1. Study extreme claims

2. Gain further insight on their heterogeneity

3. Analyse the impact of characteristics on extreme claims

Focus on

• Tail of the distribution

• Severity of extreme claims

) Two statistical tools :

1. Extreme value theory

2. Regression and classification trees
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Statistical tools
Extreme Value theory



Extreme Value Theory

Goals of Extreme Value Theory

Goals of Extreme Value Theory

1. Estimate extreme quantiles

2. Estimate the occurrence probability of an event more extreme than previously observed

) Inference outside of the range of the data
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Extreme value theory

Peaks over threshold method
• Y1,Y2, . . . series of i.i.d. random variables
• Fix a (high) threshold u

• Extreme event = Yi exceeds u

! Given that Yi > u, define the excess Xi = Yi °u
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Extreme value theory

Peaks over threshold method
• Y1,Y2, . . . series of i.i.d. random variables
• Fix a (high) threshold u

• Extreme event = Yi exceeds u

! Given that Yi > u, define the excess Xi = Yi °u

Balkema and de Haan (1974)

If there exist (au) > 0, (bu) and a non-degenerated distribution function H such that,

P[Yi °u   aux+bu | Yi > u]
d°°°°!

u!1
1°H(x) ,

then H is necessarily of the form

Hæ,∞(x) =
(

1°
°
1+ ∞

æx
¢°1/∞

if ∞ 6= 0

1°exp
°
° x

æ

¢
if ∞= 0

• Possible limits of excesses = Parametric family of distributions
,! Generalized Pareto Distributions
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Extreme value theory and regression models

• Semi-parametric approaches
• Exponenial regression model (Beirlant et al., 2003)
• Smoothing splines (Chavez-Demoulin et al., 2015)

• Non parametric approach (Beirlant and Goegebeur, 2004)
• Local polynomial maximum likelihood
• Only for continuous covariates
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Statistical tools
CART algorithm



Classification And Regression Trees (CART)

Regression tree (Breiman et al., 1984)

m
§ = arg min

m2M
E[¡(Y ,m(X))],

• Y is a response variable (the cost of a cyber claim in our case)

• X 2X ΩRd is a set of covariates

• M is a class of target functions on Rd

• ¡ is a loss function that depends on the quantity we wish to estimate
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Growing phase
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Growing phase

Splitting rules

x = (x
(1), . . . ,x

(d)) °! Rj(x)

with
8
><

>:

Rj(x) = 0 ou 1

Rj(x)Rj0 (x) = 0 for j 6= j
0

P
j Rj(x) = 1
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Growing phase

1. Step 0 : R0(x) = 1 and n1 = 1 (root)

2. Step k+1
• (R0, . . . ,Rnk

) rules obtained at step k. For j = 1, . . . ,nk

• If all observations s.t. Rj(Xi) = 1 have the same characteristics. Keep Rj

• else, Rj is replaced by two new rules Rj1 and Rj2

! For each component X
(l) of X = (X

(1), ...,X
(d)), define x

(l)
?

x
(l)
? = argmin

x(l)
©(Rj,x

(l))

©(Rj,x
(l)) = an empirical version of E[¡(Yi,Xi)] computed on each sub-group

! Select the best component index
l̂ = argmin

l

©(Rj,x
(l)
? )

! Define
Rj1 (x) = Rj(x)1

x(l̂)∑x
(l̂)
?

and Rj2 (x) = Rj(x)1
x(l̂)>x

(l̂)
?
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Growing phase
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Growing phase

Regression estimator m̂
R(x) of m

§ given by

m̂
R(x) =

sX

j=1
m̂(Rj)Rj(x) where m̂(Rj) = arg min

m2M

nX

i=1
¡(Yi,Xi)Rj(Xi)
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The splitting rule and loss functions

• Quadratic loss ! Mean regression
¡(y,m(x)) = (y°m(x))2

,! m
§(x) = E[Y | X = x]

• Absolute loss ! Median regression
¡(y,m(x)) = |y°m(x)|

,! m
§(x) = conditional median

• Log-likelihood loss, here GPD

¡(y,m(x)) =° log(æ(x))°
µ

1
∞(x)

+1
∂

log
µ
1+ y∞(x)

æ(x)

∂
,

,! m
§(x) = (æ(x),∞(x))
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Pruning step: model selection

• Let Tmax be the maximal tree obtained in the first phase and Kmax the number of its leaves

• Consists in the extraction of a subtree from Tmax

• Standard way to proceed = use a penalized approach
! Disadvantage the trees with large numbers of leaves

• Subtree S associated with a set of rules RS =
°
R

S

1, . . . ,R
S

nS

¢

• Select the subtree bS(Æ) that minimizes, among all subtrees of Tmax the criterion

CÆ(S) =
nX

i=1
¡(Yi,m

RS

(Xi))+ÆnS

• Æ> 0 is chosen by cross-validation

• Denote bTbK the selected tree and bK the number of its leaves
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Consistency of the algorithm

• Let bTK any subtree of Tmax with K leaves

• Let T
§
K

be the optimal tree among all trees with K leaves

Consistency of the tree

Under certain conditions, for all K = 0, . . . ,Kmax

E
£
kbTK °T

§
K
k2

2
§
∑ C

(logn)2 log(n/kn)
kn

• Let T
§ be the optimal tree and K0 the number of its leaves

Consistency of the pruning step

Under certain conditions

E
£
kbTbK °T

§k2
2
§
∑ C

0
K0

(logn)2 log(n/kn)
kn
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Numerical expirements



Simulated data

• X = (X1,X2,X3) 3 discrete covariates
taking values in {a,b,c,d}

• Y ª GPD(æ(X),∞(X)) distributed
according to a toy model

• 2 splits on X1 and X2

• 3 terminal leaves

• (æ1,æ2,æ3) =
°
∞1,∞2,∞3

¢
= (0.5,1,1.5)

• Simulate Y1, . . . ,YN

• N =96, 384, 768, 1536, 3072, 6144
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Simulated data
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Simulated data
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Application to real data: cyber-claims

(Farkas et al, 2020)

• Privacy Rights Clearinghouse (nonprofit association)

• Founded in 1992

• Publicly available

• Benchmark for Cyber event analysis

• Aim at raising awareness about privacy issues.

• Chronology of data breaches maintained from 2005.
• Gathering events information from multiple sources:

• US Government Agencies (Federal level–HIPAA): Health domain, obligation to declare any breach that
affects more than 500 individuals

• US Government Agencies (State level): since 2018, each state has a specific legislation related to data
breaches

• Media
• Non profit organizations.

• Focus on the Tail of the distribution
• Consider only the number of affected records above 27 000
• Fit a GPD CART
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Application to real data: cyber-claims

Farkas et al, 2020
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Conclusion

• Propose a methodology to study extreme claims by taking into account
• heterogeneity,
• impact of the covariates
• evolution through time

• Give theoritical guarantees

• Advantage: interpretation.

• Drawbacks: the robustness of the tree structure and the estimator.

• Future works: consider random forest

16



Thank you for your attention
Contact details : 
Maud Thomas 
ISUP - LPSM, Sorbonne Université
4 place Jussieu 75005 Paris 
maud.thomas@sorbonne.universite.fr

https://www.actuarialcolloquium2020.com/ 

mailto:maud.thomas@sorbonne.universite.fr
https://www.actuarialcolloquium2020.com/
https://www.actuarialcolloquium2020.com/


Disclaimer: 
The views or opinions expressed in this presentation are those of the authors and do not necessarily reflect 
official policies or positions of the Institut des Actuaires (IA), the International Actuarial Association (IAA) and 
its Sections. 
While every effort has been made to ensure the accuracy and completeness of the material, the IA, IAA and 
authors give no warranty in that regard and reject any responsibility or liability for any loss or damage 
incurred through the use of, or reliance upon, the information contained therein. Reproduction and 
translations are permitted with mention of the source.  
Permission is granted to make brief excerpts of the presentation for a published review. Permission is also 
granted to make limited numbers of copies of items in this presentation for personal, internal, classroom or 
other instructional use, on condition that the foregoing copyright notice is used so as to give reasonable 
notice of the author, the IA and the IAA's copyrights. This consent for free limited copying without prior 
consent of the author, IA or the IAA does not extend to making copies for general distribution, for advertising 
or promotional purposes, for inclusion in new collective works or for resale.  


