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Abstract
In recent years, one of the most critical tasks for actuaries is to adopt data science techniques
in predictive modeling practice. However, due to the peculiarity of insurance data as well as
the priorities taken by actuaries in decision-making, such as the interpretability of models and
regulatory requirements, most actuaries may find difficulties in applying them. We believe some
original modeling methods with a good balance of high predictive accuracy and strong explana-
tory power is what is required. We propose, from this standpoint, AGLM (Accurate GLM), a
simple modeling method with a desirable good balance accomplished by combining data science
techniques and conventional Generalized Linear Models. For practitioners’ convenience, we have
also developed an R package named aglm (https://github.com/kkondo1981/aglm). Since the
first version released in January 2019, the aglm can make numeric features segmented optimally
exactly as Fused LASSO does when the L1 regularization is designated. In addition, the current
version can, alternatively if preferable, change them from linear variables to the optimal piece-wise
linear variables. Those functions make the constructed predictive model much more flexible than
a conventional GLM hopefully still keeping sufficient explanatory power.

1 Introduction
In recent years, it has become an essential task for actuaries to integrate machine learning and data
science techniques into actuarial practices as those techniques have been developing remarkably.
There are many types of recent research on the implementation of machine learning methods, in-
cluding the gradient boosting machine (GBM) and the neural network (NN), for pricing, reserving
evaluation, and so on (Yang, Qian, and Zou 2018), (Poon and others 2019). These modeling meth-
ods achieve high prediction accuracy by specifying the important features among many candidates
and fully capturing the complicated non-linear relationship between the features and the response
variable. These methodologies will be indispensable to evaluate risks precisely for actuaries who
are working in the information society, where a massive amount of data is being produced every
second.

On the other hand, actuaries have traditionally developed predictive modeling by themselves to
forecast future events from the given data (Frees, Derrig, and Meyers 2014). In this area, they
have chosen to use the generalized linear model (GLM), the generalized additive model (GAM),
and so on, which can clearly model relationships between the features and the response variable,
and hence are interpretable. It is essential to use interpretable models with the knowledge of
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insurance business used in actuarial practices such as claim analysis, pricing, reserving evaluation,
and cash flow prediction. For instance, actuaries have accountability to their stakeholders (such as
regulators, auditors, etc.), and they are expected to ensure that models are reflecting the knowledge
shared among insurance practitioners and then determine the distribution of the response variable.

Given the situation above, it seems useful to create models with high interpretability and high
prediction accuracy. It is naturally not easy, as there is a trade-off between high interpretability and
high prediction accuracy, but is likely becoming a trend in both machine learning and predictive
modeling areas. For example, pieces of research on the interpretability for AI and machine learning
have been getting attention recently (Gunning 2017). Also, in predictive modeling, initiatives on
balancing between prediction accuracy and interpretability have been increasing. For instance,
Devriendt et al. (2018) proposed the regularized GLM with different types of regularization
term according to the type of features such as integer, ordinal, categorical, aiming to enhance
interpretability. While Wüthrich and Merz (2019) suggested a method combining GLM and NN
to improve the predictive accuracy of GLM, which can be interpreted as a way to hire high
interpretability of GLM and high predictive accuracy of NN simultaneously. In the future, we
expect that the initiatives on well-balanced models between high predictive accuracy and high
interpretability will become more and more critical.

Our model, Accurate Generalized Linear Model (AGLM), is developed to achieve both high in-
terpretability and high predictive accuracy. It is based on GLM and equipped with recent data
science techniques. High interpretability and high predictive accuracy are achieved at the same
time in the following ways.

• AGLM has a clear one-to-one relationship between the features and the response variable,
as it is based on GLM. Therefore, it is possible to explain clearly whether the increase in a
certain variable always gives a negative or positive effect on the response variable when the
other features remain the same. Machine learning methods like GBM and NN often do not
have this property. Users can usually explain only average relationships between the features
and the response variable, but it is not always the case. However, this could cause issues
when we explain about features of interest, for example, differences of output according to
the gender and/or age of each insured.

• AGLM can avoid both underfitting and overfitting even when there are many features and/or
highly complicated relationships between the features and the response variable by using data
science techniques. High predictive accuracy is be achieved by introducing discretization,
two specific transformations of features (we call them O dummy variables and L variables
respectively), and regularization into GLM. We will show the details later. As a result, our
numerical experiments show the high prediction accuracy of the AGLM, which is comparable
with GBM.

Note that it is important for us to provide an environment where many actuaries can easily use
AGLM because it aims to satisfy the required properties for actuarial practices. Therefore, we
developed an R package named aglm for AGLM and shared it as an open-source. Hence, the
numerical experiments by this package demonstrates how to apply it to insurance data.

Our paper consists of the following chapters. In Chapter 2, we explain GLM and the regularized
GLM, which are base models for AGLM. In Chapter 3, we define AGLM and describe techniques
used in AGLM. And, we provide the outline of aglm package. In Chapter 4, we qualitatively
compare AGLM with other existing models in terms of both interpretability and prediction accu-
racy. In Chapter 5, we quantitatively evaluate AGLM through examples of Poisson regression for
insurance data. Finally, in Chapter 6, we conclude.
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2 GLM and Regularized GLM
In this chapter, we consider GLM and the regularized GLM, which are the base models for our
AGLM.

GLM (Nelder and Wedderburn 1972) is a model that constructs the following relationship between
the expected value of each response variable and the features, assuming that the error distribution
of a response variable belongs to the exponential distribution family.

𝐸[𝑦𝑖] = 𝑔−1(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) (𝑖 = 1, 2, ..., 𝑛), (1)

where 𝑛 is the number of observations, 𝑦𝑖 is 𝑖-th response variable, 𝑥𝑖𝑗 (𝑗 = 1, 2, ..., 𝑝) are 𝑖-th
features (𝑝 is the number of features), and 𝛽𝛽𝛽 = (𝛽0, 𝛽1, ..., 𝛽𝑝)𝑇 represents regression coefficients.
𝑔 is called the link function that is differentiable and strictly monotonic and links the expected
value of 𝑦𝑖 with the linear combination of features 𝛽0 +𝛽1𝑥𝑖1 +⋯+𝛽𝑝𝑥𝑖𝑝. The estimated value ̂𝛽𝛽𝛽 of
𝛽𝛽𝛽 is given by maximum likelihood estimation (MLE) as the solution of the following minimization
problem.

̂𝛽𝛽𝛽 = argmin
𝛽𝛽𝛽

{− log 𝐿(𝛽𝛽𝛽)}, (2)

where 𝐿(𝛽𝛽𝛽) is the likelihood function.

Then, the regularized GLM is a model that applies regularization to GLM (Friedman, Hastie,
and Tibshirani 2010). The regularization is a method that penalizes the complexity of the model
by adding the regularization term to the objective function. Specifically, the estimation of 𝛽𝛽𝛽 for
the regularized GLM can be done by extended maximum likelihood estimation as follows, where
𝑅(𝛽𝛽𝛽; 𝜆) is the regularization term.

̂𝛽𝛽𝛽 = argmin
𝛽𝛽𝛽

{− log 𝐿(𝛽𝛽𝛽) + 𝑅(𝛽𝛽𝛽; 𝜆)}. (3)

As typical regularization terms, Ridge (Hoerl and Kennard 1970), Lasso (Tibshirani 1996), and
Elastic Net (Zou and Hastie 2005) are widely used. Note that the intercept is not generally
included in the regularization, and thus the subscript 𝑗 ranges from 1 to 𝑝.

Ridge (L2 regularization) 𝑅(𝛽𝛽𝛽; 𝜆) = 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|2,

Lasso (L1 regularization) 𝑅(𝛽𝛽𝛽; 𝜆) = 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|,

ElasticNet 𝑅(𝛽𝛽𝛽; 𝜆, 𝛼) = 𝜆 {(1 − 𝛼)
𝑝

∑
𝑗=1

|𝛽𝑗|2 + 𝛼
𝑝

∑
𝑗=1

|𝛽𝑗|} .

(4)

Here, 𝜆, 𝛼 (𝜆 > 0, 0 ≤ 𝛼 ≤ 1) are hyperparameters given by users, which determine the regular-
ization effect. They are generally determined by the holdout or the cross validation (CV). The
Elastic Net includes Ridge (𝛼 = 0), Lasso (𝛼 = 1) and mixed model (0 < 𝛼 < 1) as its special
cases. The effects of regularization is as follows, depending on the types of regularization terms.

• Avoid the instability of calculation result due to multicollinearity.
• Deal with ill-conditioned problems (𝑝 > 𝑛).
• Achieve feature selection (automatically select the effective features among a lot of candi-

dates).
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• Avoid the decline in prediction accuracy due to overfitting.

The regularization is widely used in the context of machine learning and data science. It might be
mainly because the regularization solves the difficulties in the modeling of high dimensional data
that many people face in these areas. Note that only the regularization including L1 norm has
the feature selection effect (i.e. Lasso and Elastic Net with 0 < 𝛼 < 1).

You can easily use the regularized GLM via R package glmnet (Jerome Friedman and Qian 2019),
for example.

3 AGLM: Accurate Generalized Linear Model
In this chapter, we describe our proposed method AGLM and its components.

3.1 Definition of AGLM
AGLM1 is defined as a regularized GLM which applying a sort of feature transformations using
a discretization of numerical features and specific coding methodologies of dummy variables. We
explain the details of AGLM components and then formulate AGLM.

3.2 The discretization of numerical features
The discretization is a very simple and widely used method, splitting a numerical feature into sev-
eral bins as groups. Here, we focus on the discretization of numerical features. Let us introduce a
numerical feature 𝑥 defined on (𝑏0, 𝑏𝑚], 𝑚 bins by 𝐵1 = (𝑏0, 𝑏1], 𝐵2 = (𝑏1, 𝑏2], ..., 𝐵𝑚 = (𝑏𝑚−1, 𝑏𝑚]
for 𝑥, and the contribution 𝛽𝑗 of each bin 𝐵𝑗 to the response variable 𝑦 as a constant. The
discretization of numerical features enables actuaries to reflect non-linear effects into models. It
is actually possible to approximate any non-linear function by the contribution curve (step func-
tion form) ∑𝑗 𝛽𝑗𝕀𝐵𝑗

(𝑥) where 𝕀 is an indicator function, so the underfitting is effectively avoided
compared to the case where the feature are used as is. Note that we also consider alternative
discretization not using step functions in AGLM as described later.

It is important to decide the number of bins in the discretization. Coarse bins have difficulties
in avoiding underfitting, while too small bins might cause overfitting. Although in traditional
way, the number or width of bins has to be determined manually, with actuarial expertise, by
considering the nature of features, the regularized GLM can automatically determine it using the
regularization. In other words, we can expect to avoid overfitting automatically by just dividing
each numerical features as much as possible and letting the regularization (Lasso or Elastic Net
with 0 < 𝛼 < 1, having feature selection effects) judge whether the contribution 𝛽𝑗 of each bin
should be included (𝛽𝑗 ≠ 0) or excluded (𝛽𝑗 = 0) in the model.

3.3 Coding of numerical features with dummy variables
In this section, we describe how AGLM codes numerical features with special dummy variables.
As mentioned above, the combination of the discretization and the regularization solves the prob-
lem of both underfitting and overfitting. However, we should consider the ordinal information2

between each bin in the discretization of numerical features. If each bin’s coefficient is esti-
mated independently, the entire component curve could lack consistency (like in the case where
𝛽𝑗−1 ≠ 0, 𝛽𝑗+1 ≠ 0, but 𝛽𝑗 = 0) or the coefficient would change sharply among the adjacent bins,

1AGLM is named as “Accurate” GLM because it can be expected to achieve higher prediction accuracy than usual
GLM, but many words that express the characteristics of AGLM such as “Actuarial,” “Accountable,” etc., happen
to begin with the same letter ‘A.’ Therefore, we see “A” in “AGLM” as a somewhat symbolic letter representing all
of these words.

2It means order ranking or magnitude relationship. Numerical features and ordinal features have that informa-
tion.
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resulting in the non-smoothness of contribution curve. For example, in the premium calculation
of insurance policies, if the claim frequency model were discretized by age band, it might cause
an output that some specific age groups can receive discounts on insurance premiums while the
nearby groups cannot. To avoid this happens, AGLM implements a feature coding using special
dummy variables.

3.3.1 O dummy variables

Firstly, we define usual dummy variables. When the discretized feature 𝑥 takes 𝑚 levels
{1, 2, ..., 𝑚}, the dummy variables 𝑑1(𝑥), 𝑑2(𝑥), ..., 𝑑𝑚(𝑥) are defined as follows.

𝑑𝑗(𝑥) = {1, if 𝑥 = 𝑗 (𝑗 = 1, 2, ..., 𝑚);
0, otherwise. (5)

Regression analysis of categorical features can be performed by coding them using dummy vari-
ables. This means that the contribution of features 𝑥 to the response variable 𝑦 can be expressed
by a linear combination ∑𝑗 𝛽𝑗𝑑𝑗(𝑥), where each regression coefficient 𝛽𝑗 (corresponding to each
dummy variable 𝑑𝑗(𝑥)) is estimated independently and the relationship between each level is not
reflected.

On the other hand, as mentioned above, there actually exist ordinal relationships between each
level (corresponding to each number of the bin) for the discretized numerical features. Therefore,
we introduce the following dummy variables 𝑑𝑂

1 (𝑥), 𝑑𝑂
2 (𝑥), ..., 𝑑𝑂

𝑚(𝑥) to capture it.

𝑑𝑂
𝑗 (𝑥) = {1, if 𝑥 < 𝑗 (𝑗 = 1, 2, ..., 𝑚);

0, otherwise. (6)

In other words, 𝑑𝑂
𝑗 (𝑥) would be 1 when the level is less than 𝑗 and 0 otherwise. This kind of

coding is called split coding (J. Gertheiss and Tutz 2009) or thermometer encoding (Garavaglia
and Sharma 1998) depending on the context. In the AGLM, we call it O (meaning “Ordinal”)
dummy variables to clarify our purpose of reflecting the ordinal relationships, while we call usual
dummy variables (Equation (5)) U dummy variables hereafter.

Let us see the difference between the U dummy variables and the O dummy variables. Table
1 and 2 shows the dummy matrices of U dummy variables and O dummy variables respectively
when the feature is age (ranging from 10 to 89-year-old) and the levels are set every 10-year-old
by discretization (level 1 for the teens, level 2 for the twenties, and the same hereinafter).

Table 1: In the case of U dummy variables

Age 𝑥 𝑑1(𝑥) 𝑑2(𝑥) 𝑑3(𝑥) 𝑑4(𝑥) 𝑑5(𝑥) 𝑑6(𝑥) 𝑑7(𝑥) 𝑑8(𝑥)
10-19 1 1 0 0 0 0 0 0 0
20-29 2 0 1 0 0 0 0 0 0
30-39 3 0 0 1 0 0 0 0 0
40-49 4 0 0 0 1 0 0 0 0
50-59 5 0 0 0 0 1 0 0 0
60-69 6 0 0 0 0 0 1 0 0
70-79 7 0 0 0 0 0 0 1 0
80-89 8 0 0 0 0 0 0 0 1

5



Table 2: In the case of O dummy variables

Age 𝑥 𝑑𝑂
1 (𝑥) 𝑑𝑂

2 (𝑥) 𝑑𝑂
3 (𝑥) 𝑑𝑂

4 (𝑥) 𝑑𝑂
5 (𝑥) 𝑑𝑂

6 (𝑥) 𝑑𝑂
7 (𝑥) 𝑑𝑂

8 (𝑥)
10-19 1 0 1 1 1 1 1 1 1
20-29 2 0 0 1 1 1 1 1 1
30-39 3 0 0 0 1 1 1 1 1
40-49 4 0 0 0 0 1 1 1 1
50-59 5 0 0 0 0 0 1 1 1
60-69 6 0 0 0 0 0 0 1 1
70-79 7 0 0 0 0 0 0 0 1
80-89 8 0 0 0 0 0 0 0 0

It is obvious that the matrix for U dummy variables is an identity matrix, while that for O dummy
variables is an upper triangular matrix without diagonal elements.

Secondly, we describe how the O dummy variables code the ordinal relationship of features. In
the case of regression analysis with O dummy variables, the contribution of each feature 𝑥 to
the response variable 𝑦 can be formulated as the linear combination ∑𝑗 𝛽𝑗𝑑𝑂

𝑗 (𝑥). Thus, 𝛽𝑗 is
added up for all 𝑗 satisfying 𝑗 > 𝑥 otherwise not. Therefore, this represents how much difference
should be made between the boundary 𝑥 < 𝑗 and 𝑥 ≥ 𝑗. Particularly, it can be expected to
automatically determine whether to integrate the adjacent groups (𝛽𝑗 = 0) or not (𝛽𝑗 ≠ 0)
by combining the feature coding with O dummy variables and the regularization with feature
selection effect (i.e. L1 norm). For Table 2, given that 𝑑𝑂

3 (𝑥), 𝑑𝑂
6 (𝑥), 𝑑𝑂

8 (𝑥) are selected (which
means 𝛽3 ≠ 0, 𝛽6 ≠ 0, 𝛽8 ≠ 0 and the other 𝛽𝑗 = 0), it concludes that the ages would be divided
into four groups: 10s to 20s, 30s to 50s, 60s to 70s, and 80s only, where the contribution of each
group to 𝑦 is constant.

It is noteworthy that the combination of the O dummy variables and L1 regularization is methe-
matically equivalent to the Fused Lasso (Tibshirani et al. 2005), which is widely known as sparse
modeling techniques. The Fused Lasso can be interpreted as adding the following terms to the
loss function, having both feature selection effect (the first term) and grouping effect of adjacent
features (the second term).

Fused Lasso 𝑅(𝛽𝛽𝛽; 𝜆(1), 𝜆(2)) = 𝜆(1)
𝑝

∑
𝑗=1

|𝛽𝑗| + 𝜆(2)
𝑝

∑
𝑗=2

|𝛽𝑗 − 𝛽𝑗−1|. (7)

The combination of O dummy variables and regularization with the feature selection effect enables
us to get the feature grouping effect corresponding to the second term in the Fussed Lasso (refer
to the Appendix for the proof of this parity). At the same time, it achieves the same effect as
the Fused Lasso. There are some advantages by using our method. For instance, we need not
modify the regularization terms and can directly use L1 regularization or Elastic Net. Therefore,
the formulation of the optimization problem can be simple in this sense.

Note that O dummy variables can alternatively be set to be 1 when 𝑥 > 𝑗 instead of 𝑥 < 𝑗, and
also can be implemented to categorical features if they have orders.

3.3.2 L variables

As discussed above, the combination of the O dummy variables and the regularization enables us
to reflect both non-linearity and ordinal relationships in the original data. However, the step-wise
contribution curve ∑𝑗 𝛽𝑗𝑑𝑂

𝑗 (𝑥) is not continuous and sometimes it is not desirable. AGLM has an
option to implement the following ingenious coding to ensure the continuity of the contribution
curve.
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As in the previous discussion, let us suppose the numerical feature 𝑥 is divided into 𝑚 bins. Then,
the L variables 𝑙1(𝑥), 𝑙2(𝑥), ..., 𝑙𝑚(𝑥) for 𝑥 are given as follows:

𝑙𝑗(𝑥) = {|𝑥 − 𝑏𝑗|, (𝑗 = 1, ..., 𝑚 − 1);
𝑥, (𝑗 = 𝑚). (8)

We can perform regression analysis with L variables instead of 𝑥 itself in the same way as with
dummy variables. Then, the contribution curve 𝐿(𝑥) = ∑𝑗 𝛽𝑗𝑙𝑗(𝑥) is a polyline (piece-wise linear
function), connecting (𝑚 + 1) points (𝑏𝑗, 𝐿(𝑏𝑗))

𝑚
𝑗=0. This is a continuous curve where the slope of

each bin is constant. Note that each 𝛽𝑗 represents the difference of slopes between the adjacent
bins, and when 𝛽𝑗 = 0, it means that the slopes of 𝐿(𝑥) in the adjacent bins are constant.

3.4 Model formulation and estimation
In the AGLM, features are transformed into multi-dimensional feature vectors by the following
procedure, before they are used in regression models.

• A numerical feature 𝑥 is applied discretization by binning and transformed into a new feature
vector (𝑥, 𝑑𝑂

1 (𝑥), 𝑑𝑂
2 (𝑥), ..., 𝑑𝑂

𝑚(𝑥)) or (𝑥, 𝑙1(𝑥), 𝑙2(𝑥), ..., 𝑙𝑚(𝑥)), where 𝑥 is the feature itself,
and 𝑑𝑂

𝑗 (𝑥)’s and 𝑙𝑗(𝑥)’s are O dummy variables and L variables. They way of binning 𝑥 and
the number of bins can be set as desired, but in our aglm package described later, we use
equal frequency method or equal width method and set the number of bins 𝑚 to 100 by
default.

• A categorical feature 𝑥 is, if the categories have order, transformed to a new feature vector
(𝑑𝑂

1 (𝑥), 𝑑𝑂
2 (𝑥), ..., 𝑑𝑂

𝑚(𝑥)), where 𝑑𝑂
𝑗 (𝑥)’s are O dummy variables. In this case, 𝑚 is equals

to number of categories.3
• A categorical feature 𝑥 without order is transformed into a new feature vector

(𝑑1(𝑥), 𝑑2(𝑥), ..., 𝑑𝑚(𝑥)), where 𝑑𝑗(𝑥)’s are U dummy variables.

Consider a regression problem which expresses a response variable 𝑦𝑖 using 𝑝 features
(𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑝). According to the above rule, convert each feature 𝑥𝑖𝑗 to 𝑚𝑗-dimensional
feature vector 𝑧𝑧𝑧𝑖𝑗 and, let 𝛽𝛽𝛽𝑗 = (𝛽𝑗1, 𝛽𝑗2, ..., 𝛽𝑗𝑚𝑗

) denote 𝑚𝑗-dimensional regression coefficients
vector.

Then, AGLM is defined as a regularized GLM that formulates the expected values of a response
variable according to the following relationship, where 𝑔 is a link function.

𝐸[𝑦𝑖] = 𝑔−1 (𝛽0 +
𝑝

∑
𝑗=1

𝑧𝑧𝑧𝑖𝑗𝛽𝛽𝛽′
𝑗) (𝑖 = 1, 2, ..., 𝑛). (9)

In addition, the regularization term is set to Elastic Net type as follows:

𝑅(𝛽𝛽𝛽1,𝛽𝛽𝛽2, ...,𝛽𝛽𝛽𝑝; 𝜆, 𝛼) = 𝜆 {(1 − 𝛼)
𝑝

∑
𝑗=1

𝑚𝑗

∑
𝑘=1

|𝛽𝑗𝑘|2 + 𝛼
𝑝

∑
𝑗=1

𝑚𝑗

∑
𝑘=1

|𝛽𝑗𝑘|} . (10)

Note that coefficient vectors are estimated by solving the minimization problem defined as Equa-
tion (3) in Chapter 2.

3In the case of regression problem without regularization, it is common to avoid multicollinearity by dropping
the 1st or 𝑚-th dummy variables, but since the ALGM is one of the types of regularization regression, no need to
drop variables.
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3.5 R package
In this section, we describe our R package named aglm.

We believe that it is important to invite practical actuaries to use AGLM easily. Hence, we develop
an R package named aglm. Another merit of providing package is to encourage as many users as
possible to reproduce the functions.

Note that the aglm package has been developed on GitHub which is a web service for open source
developers so that you can see the updated source code from our GitHub page4. In addition, you
can easily install the aglm package from GitHub by using devtool package5.

3.5.1 Basic functions

Use aglm function as follows to train and fit data.
library(aglm) # Load aglm
fitted <- aglm(x, y, alpha = 1, lambda = 0.1)

Here, x is a data frame for the features and y is a vector for the response variable. The aglm
returns a calibrated model as an R object after estimating the parameters of the AGLM which
represents the relationship between x and y. The arguments alpha and lambda correspond to the
hyperparameters 𝛼 and 𝜆 respectively.

Note that we need to use linear terms and the O dummy (or L) variables for numeric variables, the
O dummy variables for ordered categorical variables, and the U dummy variables for the others.
The aglm function automatically determines the types of dummy variables to apply according to
each feature’s type in x. Table 3 below shows the relationship between each type of data in R and
dummy variables applied by the aglm function. This is just a default setting and can be changed
if needed.

Table 3: Feature type handling by aglm function

Feature type in R Class Ordered? Linear term U dummy O dummy/L var
numeric, integer Numerical Yes ✓ - ✓
ordered Categorical Yes - ✓ ✓
factor, logical Categorical None - ✓ -

We can then run prediction for the response variable corresponding to new features newx by using
predict function with the fitted object described above.
newy <- predict(fitted, newx)

3.5.2 More functions

The aglm package provides various functions to enhance usability for users as follows (see Table
4).

Table 4: aglm functions

Name Function
aglm Fit AGLM
predict Predict a response variable for new features

4https://github.com/kkondo1981/aglm
5use devtools::install_github function.
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Name Function
plot Plot components or partial residuals
cv.aglm, cva.aglm Determine the optimum alpha, lambda by CV
coef, deviance, residuals Calculate regression coefficients, deviance, and residuals

For example, the relationship between each feature and a response variable can be visualized
by the plot function. More, tuning of hyperparameter based on data can be performed by the
cv.aglm and cva.aglm. The coef, deviance, and residuals are useful to confirm the result
of analysis. Note that these functions can be used like these of glmnet package6 so that users feel
familiarity with glmnet can easily use the aglm package.

4 Advantages of AGLM
In this chapter, we describe what are the strong points of AGLM, comparing with other modeling
methods qualitatively (quantitative evaluations will be shown in Chapter 5), and introduce our R
package.

4.1 The pros of AGLM
The AGLM has been developed based on GLM, which is familiar to actuaries, resulting in high
interpretability. Note that the improvement can be made by elaborating on the feature engineering
with the discretization, the O dummy variables, and the L variables on the condition that GLM
framework holds. Therefore, the optimization formula of AGLM falls in the range of the regularized
GLM’s framework. We summarize the pros of AGLM as follows.

• Hold a clear and intuitive one-to-one relationship between the features and the response
variable since it is based on GLM.

• Avoid both underfitting and overfitting, even if there are a lot of features or complicated
non-linear relationships between the features and the response variable. In particular:

– Avoid underfitting by the O dummy variables and L variables for the numerical features
discretized with small bins.

– Avoid overfitting by selecting effective dummy variables through the regularization.

Furthermore, as mentioned in Chapter 3, the combination of each component of AGLM will
enhance the flexibility of the model, which also contributes to enhancing the interpretability.
Thus, the AGLM is a hybrid model of GLM and data science techniques, aiming to achieve a good
balance between interpretability and prediction accuracy.

4.2 Advantages to other modeling methods
In this section, we qualitatively evaluate the characteristics of AGLM by comparing it with other
models used in predictive modeling and data science field. We use the following models for the
comparison:

• GLM (including the regularized GLM)
• GAM
• Tree-type models

4.2.1 Comparison with GLM

The GLM has been used traditionally and is a popular method in actuarial practices. The ac-
tuarial data, including claim frequency and severity, have specific properties such as taking only

6https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
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positive values, right-skewed distribution, and the tendency of the variance increase as the ex-
pected value rises. GLM fits these kinds of data well. It is also highly interpretable that it has a
clear one-to-one relationship between the features and the response variable. AGLM also shares
this nature. On the other hand, when there are many features or highly complicated relationships
between the features and the response variable, GLM (except the regularized GLM) needs a man-
ual feature selection and/or additional feature engineering such as the discretization. By going
through these elaborations, GLM might achieve the equivalent prediction accuracy with AGLM.
However, AGLM’s automated feature engineering will achieve higher prediction accuracy more
easily in many cases.

As for traditional actuarial practice, features in actuarial data such as insured age and rating class
are already familiar to actuaries, and the number of them might not be so large. In this case, we
do not need the regularization technique because we could do flexible modeling by inspecting data
and utilizing actuarial expertise. However, it is anticipated that we will face a situation where we
have to deal with a large number of features or with data which is unfamiliar to actuaries as the
information society will develop further. Thus, we expect AGLM to be indispensable for actuaries
as well in the future.

4.2.2 Comparison with GAM

Like GLM, GAM (Hastie 2017) has high interpretability as it has a clear one-to-one relationship
between the features and the response variable. In addition, GAM can be expected to have higher
prediction accuracy than GLM because its smoothing function (i.e. splines) captures non-linearity
to some extent. On the other hand, presumably, the discretization based AGLM would work well
when the relationship between the features and the response variable is non-linear but smooth,
such as the case where there is a feature having a large impact in the only specific range or where
the smooth function does not work well due to the inappropriateness of the explanation variable’s
scale.

Note that there is no clear difference between GAM and AGLM in terms of interpretability, so you
can choose the method based on your preference whether you like smooth function (e.g. spline)
or step function when the feature takes a constant value within each bin (or a constant slope in
the case of the L variables). The smooth curve by GAM is intuitively understandable but is not
always easy to deal with, and it would sometimes be inappropriate in terms of interpretability.
And when making a tariff (rating table), AGLM, where each bin can have a constant value, would
be rather understandable.

Finally, when there are lots of features, GAM with the regularization would effectively avoid
overfitting (Chouldechova and Hastie 2015). However, there are seems to be difficulties when you
try to exploit the regularized GAM in the actuarial field yet, seeing for example, the R package
gamsel (Alexandra Chouldechova and Spinu 2018) only provides options of the normal distribution
or binomial distribution.

4.2.3 Comparison with tree-type models

The tree-type models such as random forests (Breiman 2001) and GBM (Friedman 2001) are called
ensemble models because they combine a large number of decision trees into a single model, which
are known for the high prediction accuracy. These models can avoid both overfitting and underfit-
ting by learning carefully with lots of parameters, resulting in capturing complicated relationships.
AGLM also implements these concepts into GLM. Thus, as described in Chapter 5, the AGLM
would be comparable with these methods in terms of prediction accuracy.

Furthermore, AGLM is advantageous in that there is a clear relationship between the features
and the response variable. The tree-type models can also capture the relationship between the
features and the response variable by the partial dependence plot (PDP), the individual conditional
expectation (ICE), etc. However, these methods basically express a “marginal” relationship based

10



on the values averaged by the other features, only showing the tendency as a whole. For example,
to explain which specific values of the policyholder attributes (30-year-old or 40-year-old, etc.)
have a higher premium, the PDP will describe something ambiguousness like “We obtain this
tendency as a whole but it will ultimately depend on other conditions”, but AGLM will explain
clearly like “We obtain this tendency decisively without exception under other conditions being
the same, no matter conditions they are.” Besides, when making modifications fitted models, it is
clear which parameters to be changed to get desirable properties in AGLM case. This AGLM’s
property would be suitable when we need to explain the validity of the model considering social
equality, etc., and actuaries often face to such situation. The AGLM also has an advantage that
we can utilize the existing knowledge of the stakeholders to GLM and the current software etc.
because of AGLM being developed by keeping GLM’s framework. An aglm package, which is
in the former section, uses the existing glmnet package as a back-end model so that we could
significantly reduce the workload for the development.

Note that we need further discussion on how to deal with interactive effects between features if
needed because we have not determined about it with AGLM, although the aglm package can add
the interactive effects between each two-feature.

5 Numerical Experiments
In this chapter, we compare the AGLM with other modeling methods by applying to actual data
and quantitatively evaluate the AGLM. And, we demonstrate how AGLM’s component curves are
different from those of the other methods.

5.1 Data Description
We use freMTPL2freq data from CASdatasets package of R (Charpentier 2014). This is the data
of French automobile insurance and has 678,013 records with 12 features listed in Table 5. We
consider ClaimNb as the response variable and log(Exposure) as offset terms. Other attributes
are used as features.

Table 5: Features in freMTPL2freq

Feature Description Type Ordered?
IDpol The policy ID Integer Y
ClaimNb The number of claims during the exposure

period
Integer N

Exposure The period of exposure for a policy, in years Real Y
VehPower The power of the car Integer Y
VehAge The vehicle age, in years Integer Y
DrivAge The driver age, in years Integer Y
BonusMalus Bonus/malus, between 50 and 350: <100

means bonus, >100 means malus in France
Integer Y

VehBrand The car brand Factor N
VehGas The car gas, Diesel or regular Factor N
Area The density value of the city community where

the car driver lives in: from “A” for rural area
to “F” for urban center

Factor N

Density The density of inhabitants (number of
inhabitants per square-kilometer) of the city
where the car driver lives in

Real N

Region The policy region in France (based on the
1970-2015 classification)

Factor N
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Table 6 shows the number of records and sum of Exposure for each value of ClaimNb.

Table 6: Distribution of ClaimNb

ClaimNb 0 1 2 3 4 5 6 8 9 11 16
# of records 643,953 32,178 1,784 82 7 2 1 1 1 3 1
Sum of Exposure 336,616.1 20,670.8 1,153.4 52.8 3.1 1.1 0.3 0.4 0.1 1.1 0.3

Furthermore, we indicate density plots of numerical features and bar plots of categorical features
in Fig 1 to capture the distribution of each feature. In these plots, densities are estimated by
geom_density function of ggplot2, and labels of Region are shortened into the first two letters
for visibility reason.

5.2 Experiment settings
For the experiment, we fitted five models to the freMTPL2freq data, namely, AGLM, GLM,
Regularized GLM, GAM, and GBM. Existing R packages are used for fitting, and we list them in
Table 7.

Table 7: Models and R packages used in the experiment

Model Package
AGLM aglm
GLM glm
Regularized GLM (with Elastic Net penalty) glmnet
GAM mgcv
GBM gbm

The Poisson error distribution and the log-link function are assumed for all modeling methods
in common. In addition, hyperparameters for models other than GLM and other model-specific
settings are chosen as follows:

• Hyperparameters 𝛼, 𝜆 of Elastic Net-type regularization are chosen by CV, using the
cva.glmnet function of glmnetUtils package for the regularized GLM, the cva.aglm
function of aglm package for the AGLM.

• For GAM, smoothers represented by the s function is applied to all the numerical features,
with its default smoothing methods and parameters.

• For GBM, the optimal number of trees are chosen with CV by the gbm function’s default
method. And, parameters for optimization are set as shrinkage = 0.01, train.fraction
= 0.9.

• For AGLM, L variables are used for discretized quantitative features.
• The default settings of fitting functions are applied to other settings.

Before experiments, we executed the following preprocessing to data:

• IDpol is discarded because it is just for identifications.
• ClaimNb greater than 4 are censored, judging they are outliers because policy terms of almost

all the policies are one-year or less. On the other hand, Exposure greater than 1 are left as
it is, guessing there is some data-processing reason and considering limited influences on the
modeling results.

• Categorical variables are transformed into dummy variables with the default way of each
fitting function, which is transforming into U dummy variables in most cases but is using
either the U dummy variables or the O dummy variables properly in the AGLM case. Because
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Figure 1: Distribution of features in freMTPL2freq (Upper: numerical features, Lower: categorical
features)
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the glmnet function cannot deal with categorical features directly, we transformed each
categorical variable into the U dummy variables (without dropping neither the first nor the
last dummy variable) manually.

• No feature engineering for the numerical features are applied, except those included in the
modeling procedure. In practices, expert actuaries often prefer GLM with binning to model
non-linearity, but only pure linear effects 𝛽𝑗𝑥𝑖𝑗 on 𝑔(𝐸[𝑦𝑖]) are modeled by GLM and the
regularized GLM in the experiment. This is because we intended to see how the AGLM can
capture the complicated effects without manual feature engineering, and these two models
are placed just as baselines.

For measuring the predictive accuracies, we use holdout method. In the data-fitting phase, 75%
of the entire data is randomly chosen and used as the train data for model-fitting. Then, after
fitting the models, the remaining 25% of the data is used as the test data to calculate Poisson
deviances as follows:

1
𝑁 test

𝑁test

∑
𝑖=1

𝑦test
𝑖 log(𝑦test

𝑖 / ̂𝑦test
𝑖 ) − 𝑦test

𝑖 + ̂𝑦test
𝑖 , (11)

where 𝑁 test is the size of the test data, { ̂𝑦𝑖}𝑁test
𝑖=1 is the fitted response variables, and {𝑦𝑖}𝑁test

𝑖=1 is
the true response variables.

5.3 Results and discussion
Now we show the result of the experiment. The deviances of the fitted models with test data are
as in Table 8 (Models with smaller deviance is better).

Table 8: Poisson deviance for test data

Model Poisson deviance
AGLM 0.3111920
GLM 0.3201199
Regularized GLM 0.3201245
GAM 0.3171236
GBM 0.3123919

We find that the AGLM is the most predictively accurate model for the experiment setting. The
worst model is the regularized GLM, but there is almost no difference in test deviances between
the regularized GLM and GLM.7 GAM and GBM are placed between the AGLM and GLM, and
GBM is better than GAM, having the second smallest deviance to the AGLM.

Next, we show how the AGLM captures the relationships between the features and the response
variable. Figure 2 shows the component levels of features(i.e., 𝑧𝑧𝑧𝑖𝑗𝛽𝛽𝛽′

𝑗 in Equation (10)), correspond-
ing to various 𝑥 values. We can immediately find that component curves of the numerical features
are non-linear and non-monotonic, and the complicated relationships between the features and
the response variable are certainly modeled in the AGLM. Note that the way the AGLM models
such relationships are purely data-driven, and in the same manner as those of modern data sci-
ence techniques like decision tree-type models and NN. In fact, the PDP of the fitted GBM shows
similarly complicated curves with the component curves of the AGLM. On the other hand, how
the component of each feature contributes to the mean of the response variable is perfectly clear

7It might sound unnatural that the regularized GLM, which includes the usual GLM as a special case with 𝜆 = 0,
results in the worse score than the usual GLM. This might happen because the improvement of predictive accuracy
by regularization for this data is quite small and errors coming from the choice of hyperparameters are larger than
it.
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in the AGLM (for instance, in the case of the Poisson regression, we can say “it works multiplica-
tively”.), while it is not easy to clearly explain how each curve in PDP contribute to the mean of
the response variable.

Another interesting point to be discussed is whether these kinds of data-driven complicated compo-
nent curves are acceptable in practices or not. However, it seems to rely on situations. Sometimes
clear one-to-one relationships and high predictive accuracy might be enough, but sometimes not.
For example, if there are some marketing or regulatory requirements on the feature, more smoothed
curves or even constant components in some range might be desirable. However, in such cases,
we can control component curves of the AGLM by using suitable binning or applying some post-
processes like smoothing. The important thing is that it is clear how such modifications affect the
response variable in the AGLM, as with the case of GLM.

6 Conclusions
In Chapter 4 and 5, We illustrated, both qualitatively and quantitatively, that our AGLM is a
well-balanced model between interpretability and prediction accuracy as follows:

• Have a clear relationship between the features and the expected value of the response vari-
able, as it is based on GLM. It exactly leads to high interpretability.

• It can be implemented to the data with a strong non-linear relationship between the features
and the response variable, like GAM and the tree-type models. AGLM is comparable with
these models in terms of prediction accuracy.

The second point above is achieved by automatic feature engineering with the O dummy variables
and L variables. AGLM would be mathematically equivalent to Fussed Lasso with respect to
quantitative variables. In addition, the L variables can be regarded as an extended model of
Fused Lasso.

Furthermore, we developed an R package aglm, and we believe it provides excellent functionalities
and flexibilities of modeling.

AGLM is developed with the idea of combining traditional GLM and the concept of recent tech-
niques of data science so as to achieve both high interpretability and high predictive accuracy.
We believe that these kinds of hybrid modeling methodologies will get more and more critical for
actuarial practice in the future.

Appendix
We confirm the parity between the combination of the O dummy variables and the L1 regularization
and the Fused Lasso indicated in Chapter 3.

For simplicity, consider a model with only one feature 𝑥 with 𝑚 possible values {1, ..., 𝑚} and let
{𝑥1, ..., 𝑥𝑛} and {𝑦1, ..., 𝑦𝑛} be observations and corresponding response variables respectively.

Then, use two types of dummy variables, {𝑑1(𝑥𝑘), ..., 𝑑𝑚(𝑥𝑘)} and {𝑑𝑂
1 (𝑥𝑘), ..., 𝑑𝑂

𝑚(𝑥𝑘)}, where
𝑘 = 1, ..., 𝑛 and two parameters, {𝛾1, ..., 𝛾𝑚} and {𝛽2, ..., 𝛽𝑚}, that satisfy 𝛾𝑖 = ∑𝑚

𝑗=𝑖+1 𝛽𝑗. We
can obtain

𝑚
∑
𝑖=2

𝛾𝑖𝑑𝑖(𝑥𝑘) = 𝛾𝑥𝑘
=

𝑚
∑

𝑗=𝑥𝑘+1
𝛽𝑗 =

𝑚
∑
𝑗=2

𝛽𝑗𝑑𝑂
𝑗 (𝑥𝑘). (12)

Consequently, take squared error function as an example, the following two optimization (mini-
mization) problems are equivalent:
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min
𝛾,𝛽

{−1
2

𝑛
∑
𝑘=1

(𝑦𝑘 − 𝛾1 −
𝑚

∑
𝑖=2

𝛾𝑖𝑑𝑖(𝑥𝑘))2 + 𝜆
𝑚

∑
𝑖=2

|𝛾𝑖−1 − 𝛾𝑖|}, (13)

and
min
𝛾,𝛽

{−1
2

𝑛
∑
𝑘=1

(𝑦𝑘 − 𝛾1 −
𝑚

∑
𝑗=2

𝛽𝑗𝑑𝑂
𝑗 (𝑥𝑘))2 + 𝜆

𝑚
∑
𝑗=2

|𝛽𝑗|}. (14)

The optimization problem (13) and (14) obviously represent the Fused Lasso and the Lasso,
respectively. Therefore, the Fused Lasso can be run by the Lasso with the O dummy variables.

References
Alexandra Chouldechova, Trevor Hastie, and Vitalie Spinu. 2018. “Package ’Gamsel’:Fit Regu-
larization Path for Generalized Additive Models.”

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32.

Charpentier, Arthur. 2014. Computational Actuarial Science with R. CRC press.

Chouldechova, Alexandra, and Trevor Hastie. 2015. “Generalized Additive Model Selection.”
arXiv Preprint arXiv:1506.03850.

Devriendt, Sander, Katrien Antonio, Tom Reynkens, and Roel Verbelen. 2018. “Sparse Regression
with Multi-Type Regularized Feature Modeling.” arXiv Preprint arXiv:1810.03136.

Frees, Edward W, Richard A Derrig, and Glenn Meyers. 2014. Predictive Modeling Applications
in Actuarial Science. Vol. 1. Cambridge University Press.

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.”
Annals of Statistics, 1189–1232.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. “Regularization Paths for General-
ized Linear Models via Coordinate Descent.” Journal of Statistical Software 33 (1): 1.

Garavaglia, Susan, and Asha Sharma. 1998. “A Smart Guide to Dummy Variables: Four Appli-
cations and a Macro.” In Proceedings of the Northeast Sas Users Group Conference, 43.

Gunning, David. 2017. “Explainable Artificial Intelligence (Xai).” Defense Advanced Research
Projects Agency (DARPA), Nd Web 2.

Hastie, Trevor J. 2017. “Generalized Additive Models.” In Statistical Models in S, 249–307.
Routledge.

Hoerl, Arthur E, and Robert W Kennard. 1970. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” Technometrics 12 (1): 55–67.

Jerome Friedman, Rob Tibshirani, Trevor Hastie, and Junyang Qian. 2019. “Package ’Glmnet’:
Lasso and Elastic-Net Regularized Generalized Linear Models.”

J. Gertheiss, C. Oberhauser, S. Hogger, and G. Tutz. 2009. “Selection of Ordinally Scaled
Independent Variables.” Applied Statistics Technical Report, no. 62.

Nelder, John Ashworth, and Robert WM Wedderburn. 1972. “Generalized Linear Models.” Jour-
nal of the Royal Statistical Society: Series A (General) 135 (3): 370–84.

Poon, Jacky HL, and others. 2019. “Penalising Unexplainability in Neural Networks for Predicting
Payments Per Claim Incurred.” Risks 7 (3): 1–11.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the
Royal Statistical Society: Series B (Methodological) 58 (1): 267–88.

17



Tibshirani, Robert, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. 2005. “Sparsity
and Smoothness via the Fused Lasso.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67 (1): 91–108.

Wüthrich, Mario V, and Michael Merz. 2019. “Yes, We Cann!” ASTIN Bulletin: The Journal of
the IAA 49 (1): 1–3.

Yang, Yi, Wei Qian, and Hui Zou. 2018. “Insurance Premium Prediction via Gradient Tree-
Boosted Tweedie Compound Poisson Models.” Journal of Business & Economic Statistics 36 (3):
456–70.

Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2): 301–20.

18


	Abstract
	Introduction
	GLM and Regularized GLM
	AGLM: Accurate Generalized Linear Model
	Definition of AGLM
	The discretization of numerical features
	Coding of numerical features with dummy variables
	O dummy variables
	L variables

	Model formulation and estimation
	R package
	Basic functions
	More functions


	Advantages of AGLM
	The pros of AGLM
	Advantages to other modeling methods
	Comparison with GLM
	Comparison with GAM
	Comparison with tree-type models


	Numerical Experiments
	Data Description
	Experiment settings
	Results and discussion

	Conclusions
	Appendix
	References

