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Abstract
Gaining an advantage in competitive markets through offerings of suitable tailored
products to customers relies on adequate predictive models. To build these models,
a substantial amount of data and a sizeable number of records is desirable. How-
ever, when expanding to new or unexplored territories, that level of information is
rarely always available. To build such models, actuarial firms have to buy data from
a local provider, through a re-insurer, through limited unsuitable industry and public
research or rely from extrapolations from other better known markets. In this work,
we show how an implicit model using Generative Adversarial Network (GAN) can
alleviate this problem through the generation of adequate quality data even from very
limited small samples, from difficult domains or without alignment. Through the pa-
per, we explain what GANs are and how they can be used to synthesize data in order
to accurately enhance very infrequent events and create better prediction models. In
addition, this work provides theoretical and practical applications of GANs. Overall,
we show a significant superiority of GANs for predictive models and stochastic simu-
lations compared to current approaches on example data sets using Python. This work
offers a number of contributions to actuaries for data augmentation, boosting predic-
tive models, attention prediction, anomaly detection, domain adaptation, data manip-
ulation, privacy preservation, missing data imputation and discriminative modelling
using GANs.

Keywords
Actuarial Science, Generative models, Generative Adversarial Network (GAN),
SMOTE, Wasserstein GAN.

1 Introduction

“. . . in the process of training generative models, we will endow the computer with the under-
standing of the world and what is made up of.”

OpenAI

1.1 Background
Gaining an advantage in competitive markets through offerings of suitable tailored
products on customers relies on building and maintaining adequate predictive models.
To build these models, a substantial amount of data and a sizeable number of records
is desirable. However, when expanding to new or unexplored markets, that level of in-
formation is rarely always available. To build such models, actuarial firms have to buy
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data from a local provider, through a re-insurer, through limited unsuitable industry
and public research or rely from extrapolations from other better known markets. In
this work, we show how an implicit model using the Generative Adversarial Network
(GAN) [69] can alleviate this problem through the generation of adequate quality data
even from very limited small samples, from difficult domains or without alignment.

A GAN is an example of a generative model that is used to create new samples
from a latent noise space. A generative model describes how a data set is generated in
terms of a probabilistic model [68]. This generative model pmodel mimics the training
data distribution pdata as close as possible. If this is achieved, then we can sample from
pmodel to generate realistic samples that appear to have been drawn from pdata. We are
satisfied if our model can also generate diverse samples that are suitable different from
the training data. In some cases, the model can be estimated explicitly and sometimes
it can generate samples implicitly. Other models are capable of doing both.

GANs are useful for learning the structure of the data and can generate new sam-
ples without explicitly postulating the model. GANs were invented in 2014 and have
generated more interest since then. They are better than other generative models, used
for data augmentation, boosting predictive models, attention prediction, anomaly de-
tection, domain adaptation, data manipulation, privacy preservation, missing data im-
putation and discriminative modelling. GANs have been highly successful in computer
vision [23, 94, 207], e-commerce [104], medicine [7], anime character creation [91], video
generation [184], super resolutions [200], music generation [192], text/speech gener-
ation [156], missing data imputation [110, 169, 196], time series generation [49] and
tabular data sets [145], with remarkable results, but their application to the actuarial
discipline remains largely still unexplored.

1.2 Aims and Objectives

Through the paper, we briefly explain what GANs are and how they can be used to
synthesize data in order to accurately enhance very infrequent events and create better
prediction models. In addition, this work offers to provide theoretical and practical
applications of GANs. Specifically, this paper covers the following aims and objectives:

• Deep overview of generative models and why GANs are of better quality than
other generative models;

• An overview of the GAN architecture with practical applications in a number of
areas, especially for an actuarial use; and

• Cover some open challenges with GANs, including recent advances and scope for
the future.
We demonstrate a popular GAN architecture to a typical problem resembling an

actuarial use on a number of data sets using Python [54]. This task can equally be
accomplished and replicated using insurance, health care, banking and investment
data such as claim frequency, claim severity, stock prediction and so on. Overall,
we show a significant superiority of GANs for predictive models and stochastic
simulations compared to current approaches.

The rest of the paper is organised as follows. Section 2 reviews the literature on neu-
ral networks and generative models, with particular emphasis on GANs. Section 3
describes GANs theoretically as well as the popular SMOTE [26] synthetic data gen-
erative scheme for comparative purposes with GAN. Section 4 outlines the example
experiments conducted. Section 5 presents the results and discusses them, while Sec-
tion 6 gives conclusions, limitations and possible future work.
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2 Literature Review

Generative models have received lots of interests from researchers for creating new
samples. This section covers a taxonomy of these techniques, with a particular focus
on GANs.

2.1 Deep Learning
This section describes Artificial Neural Networks (ANNs) as they form the foundation
work for GANs.

2.1.1 Layers
From a statistical viewpoint, an ANN represents a nested combination of several func-
tions stacked sequentially to yield a desired output [68]. An example of an ANN is
shown in Figure 1.

Figure 1: A fully connected MLP example with three layers

An ANN has input features, hidden layers and the target which gives the resulting
output [68]. Deep Learning is concerned with many complex layers of the ANN. Each
input feature is assigned a weight θ which represents its importance. Hidden layers
receive inputs from prior nodes beneath them and propagate the output to other hidden
layers above them [68, 131].

As an illustration, Figure 1 shows an ANN with three layers, with two-dimensional
input, two layers with three units and one output layer with one unit, where uli =
gl(Θl + bl), xi is the input, x0 is the bias term, Θl

l,i is a weight parameter for each
layer and hθ(x

n) is the predicted target. This ANN can be a regression or a classifier,
depending on the activation function in the output.

2.1.2 Activation Functions
An input X is multiplied by a weight θ, results added together and the resulting sum
flows through an activation function. Activation functions introduce non-linearities
and transmit the resulting output into the target output [68, 131], restricting the output
to a certain finite value [57]. A key characteristic of activation functions is that they
must be continuously differentiable. Table 1 lists common activation functions where
z is the result of the weight matrix Θ multiplied by the feature vector X and g(.) is the
activation function.
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Activation Function Formula
Linear g(z) = z
Sigmoid g(z) = 1

1+exp− z

Hyperbolic tangent (tanh) g(z) = expz − exp− z

expz + exp− z

Rectified Linear Unit (ReLU) [66] g(z) = max (0, z)
Leaky ReLU [121] g(z) = max (0.01z, z)
PReLU [76] g(z) = max (αz, z)
Softplus [137] g(z) = log (1 + expz)
Swish [154] g(z) = z.sigmoid (βz)

Table 1: Taxonomy of activation functions for ANNs

The sigmoid outputs a vector where each element is a probability, bounded be-
tween 0 and 1 and is typically adopted in the final layer for binary problems. ReLU
ranges between zero and infinity and is known for being robust against vanishing gra-
dients [33, 66, 121]. Leaky ReLU [121] solves the dying ReLU problem. The tanh func-
tion is bounded between −1 and 1 and has been a default activation function in the
hidden layers until ReLU was proposed [66]. The tanh function gives values of differ-
ent signs which makes it easier to decide which scores to consider in the next layer and
which to ignore. However, it shares the unfortunate weakness of vanishing gradients
with the sigmoid activation function [33, 66, 121].

Parametric ReLU (PReLU) [76] is of the same form as Leaky ReLU except that it
has a scalable and learnable parameter α. Softplus [137] is a smoother version of ReLU
[154]. Ramachandran, Zoph, and Le [154] show that the Swish activation function be-
haves in a similar manner as the ReLUs and worked better on many challenging data
sets. It remains to be seen if recent activation functions such as Swish [154] and Mish
[130] will replace ReLU and Leaky ReLU in the future.

2.1.3 Gradient Descent
The weights Θ are optimised to minimise a loss function [68]. This means that train-
ing an ANN means to show it many examples, make predictions through feed-forward
computations and then compare them with the actual labels to compute the resulting
loss. Finally, the ANN adjusts these weights from all nodes until it gets a desired min-
imum loss value and thus optimal weights. Mathematically, for a binary problem, the
loss function J(θ) to be minimised is:

J (Θ) =
−1

N

 N∑
i=1

K∑
k=1

y(i)

k log
(
hθ(x

(i))k

)
+
(
1− y(i)

k

)
log
(

1− hθ(x(i))k

) (1)

whereN is the size of the data set, hθ(x(i))k is the predicted target, θk’s are the unknown
coefficients, X is the feature vector and y(i)

k is the actual target. Gradient Descent (GD)
optimises the above loss function [161]. GD finds the most optimal weights Θ itera-
tively [78] using the following process:

• Initialise weights θ(
k

0) randomly using He or Xavier initialisation;
• Loop until convergence i.e. until sufficient number of epochs t are reached:
• Compute the gradient ∂J(Θ)

∂θk
;

• Update weights θk using the learning rate η to move towards the minimum loss,
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θ
(
k
t) = θ(

k
t−1) - η ∂J(Θ)

∂θk
;

• Return weights Θ.
Other optimisation approaches can be used such as second order approximations

i.e. Newton’s method. However, these methods tend to be infeasible for high dimen-
sions and large training data sets [161]. Thus GD is the most popular and common
approach for solving ANN weights.

The above process is called Batch GD (BGD) as the weights are updated using the
entire data set [161]. This can be very slow, intractable and does not allow to update
weights online [47, 98, 198]. Stochastic GD (SGD) updates the weights one sample at a
time [161].

However, SGD usually performs frequent updates and this leads to volatility as
there might be fluctuations and over-shooting [116]. A compromise between BGD and
SGD is called mini-batch GD and this updates weights using a batch of m training
samples. Typically, mini-batch training samples can be anything from 50 to 256 but this
could vary with different domains [161].

However, even though mini-batch GD tends to be better than BGD or SGD, it may
still be slow in convergence due to η [47, 98]. The learning rate η specifies how fast
an ANN updates its weights. If η is too small, the model may not converge or descend
slowly and this can be computationally expensive [116]. If η is too large, the model may
take gigantic descents and miss the global minimum [46, 98, 139]. Adaptive learning
rates have been proposed to improve η (shown in Table 2).

Basically, the algorithms incorporate a term to adapt η or use exponential moving
average of current and/or past gradients [98, 130, 203]. Adaptive Moment estimation
(Adam) [98] is the most popular and recommended algorithm for solving weights of
an ANN [116, 155, 161]. Table 2 shows a taxonomy of GD optimisers, differing on two
ways on either modifying η or modifying the gradient component or both.

GD optimiser Year Learning rate Gradient
Momentum [151] 1964

√

Adaptive gradient (AdaGrad) [47] 2011
√

RMSprop 2012
√

Adaptive delta (Adadelta) [198] 2012
√

Nesterov Accelerated Gradient (NAG) [139] 2013
√

Adam [98] 2014
√ √

AdaMax [98] 2015
√ √

Nadam [46] 2015
√ √

AMSGrad [155] 2018
√ √

Rectified Adam (RAdam) [116] 2019
√ √

LookAhead, Ranger [203] 2019
√ √

Table 2: Gradient descent optimisation variants

Other algorithms include SGD with Momentum [151], Adaptive gradient (Ada-
Grad) [47], Root mean square prop (RMSprop) 1, Adaptive delta (Adadelta) [198],
Nesterov Accelerated Gradient (NAG) [139], AdaMax [98], Nadam [46] and AMSGrad
which is another variant of Adam [155]. We describe three popular GD optimisation
variants as these are typically used in most deep ANNs: Momentum, RMSprop and
Adam.

1https://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf

International Actuarial Colloquium France, Paris 11-14 May 2020 5

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


K.S. Ngwenduna and R. Mbuvha

2.1.3.1 Momentum Momentum helps in accelerating SGD in the correct direction
and dampening oscillations [151] using the following equation:

θt+1,i = θt,i − Vt,i

Vt,i = γVt−1,i + η
∂J (Θ)

∂θt,i

where Vt is the velocity representing the exponential moving average of past gradients
and γ is the momentum (typically 0.9) [161]. Values for Vt are typically initialised close
to zero.

2.1.3.2 RMSprop Root Mean Square propagation (RMSprop2) chooses a different η
for each weight Θ. RMSprop is an unpublished GD optimiser that was invented by
Geoff Hinton. RMSprop is formulated as:

θt+1,i = θt,i −
η√

E
[
g2
t,i

]
+ ε

E[g2
t,i] = γE

[
g2
t−1,i

]
+ (1− γ) g2

t,i

gt,i =
∂J (Θ)

∂θt,i

where typically γ = 0.9, η = 0.001, ε avoids null division and E[g2]t,i represents the
running average of past gradients at time step t.

2.1.3.3 Adam Adam is a combination of Momentum and RMSprop. Kingma and Ba
[98] show a superior performance of Adam over other optimisers. Adam is defined
below:

θt+1,i = θt,i −
η√
v̂t + ε

m̂t

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g2
t

where m̂t and v̂t are bias-corrected first mt and second moment estimates vt of the
gradients respectively, typically initialised to 0’s. The parameters can be estimated via
cross-validation approach or using default values proposed by the authors as per Keras
documentation [55, 98, 161].

In general, Adam has been empirically shown to work well in practise and com-
pares fairly well with other optimisers [55, 98, 116, 153, 155, 161]. However, it remains
to be seen if recent optimisers such as Rectified Adam (RAdam) [116], LookAhead and
Ranger [203] will consistently outperform Adam in the future.

2https://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf
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2.2 Weight Initialisation

To conduct GD, weights Θ needs to be initialised. The weights can affect how quickly
or if at all the local minimum is found by the network training algorithm [67], known
as the exploding gradient problem.

Two popular approaches are the He (if using ReLU/Leaky ReLU in the hidden
layers) [76] and Xavier (if using tanh in the hidden layers) [65] initialisation. He initial-
isation initialises weights from a standard Gaussian distribution and then multiplied
by the square root of (2/ni) where ni is number of input units for that layer. Xavier
initialisation works by replacing 2 with a 1 instead.

2.3 Regularisation

The specification of many of the hyper-parameters in ANNs could often cause over-
fitting or under-fitting [68]. Regularisation is a practice in ML that is used to curb over-
fitting. Typically, batch normalisation [88], drop-out [174], early stopping, L1 and L2
regularisation [57, 179] can be used.

2.3.1 Batch normalisation

Batch normalisation standardizes hidden layers such that they have a mean 0 and unit
standard deviation for each training mini-batch as units flow through each layer [88].
In practise, this results in faster, more stable training and a regularization effect [88,
153].

2.3.2 Drop-out

In drop-out, some units in the layer are temporarily excluded at random from the train-
ing [174]. The drop-out parameter is typically in the range [0, 1] with 0.5 the most popu-
lar value for retaining the output of each layer [67, 153, 174]. This can be implemented
per layer in the network. This forces the training process to be more noisy, allowing
each layer to take flexible responsibility for the inputs.

2.3.3 Early Stop

GD proceeds in epochs which consist of using the training set entirely to update each
parameter [161]. Initially, weights Θ are initialised. Then at each epoch, the weights are
updated using partial derivatives using any GD optimiser until the process the weights
do not change much i.e. until convergence [65, 76]. Typically, we require many epochs
until this convergence and then we stop. Early stop is a practice where training is
stopped when the cost starts increasing steadily instead of decreasing. One can then
stop training the model at that epoch.

2.3.4 L1 and L2 regularisation

Regularisation enforces the ANN to learn a less complex model by adding a penalising
term Equation 1 [179].

L1 regularisation performs sparse modelling by adding λ
∑d
k=1 θk to Equation 1

where λ is the importance parameter. This shrinks some coefficients to zero, yielding
to implicit variable selection. This method is preferred for model explainability. L2 reg-
ularisation or ridge regression adds λ

∑d
k=1 θ

2
k to Equation 1. This is typically preferred

for maximising model performance [57]. Elastic net combines both L1 and L2 regu-
larisations. Hyper-parameterisation can be done in order to choose which approach is
desirable.
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2.3.5 Summary
There are a number of parameters to tune in ANNs. Typically, weight initialisation,
activation function, η, the number of layers, regularisation approach, the number of
neurons, GD optimiser and the number of epochs are required before training an ANN.
There is no best approach but some heuristics and best practise are typically followed.
In this work, ANNs provide theoretical foundations for GANs.

2.4 Generative Modelling
Whilst machine learning (ML) has gained significant prevalence in the past few
decades, class imbalance, limited data sets and missing data remain pervasive prob-
lems. These issues occur due to the nature of the data space, data collection costs,
limitations, new markets and absolute rarity [89, 119]. These issues create problems
for building models as they lead to inadequate data, leading to inaccurate or mislead-
ing models, biased accuracy measures and subjective uncertainty margins which create
further model risk [52].

This research is concerned with handling these problems through generative mod-
elling. Other approaches exist such as synthetic sampling, however, these approaches
do not take into account the underlying structure of the data distribution and often
lead to over-fitting and over-lapping cases [62, 199]. Generative models are flexible
models capable of learning the data distribution and sampling from this data distribu-
tion, thereby creating new synthetic cases. In this section, we review generative models
and explain why GANs are of better quality than other deep generative models.

2.4.1 Definition
Given a data set with observations X , we assume that X has been generated from an
unknown probability density function (PDF) pdata. A generative model pmodel mimics
pdata as close as possible. If this is achieved, then we can sample from pmodel to generate
realistic samples that appear to have been drawn from pdata. We are satisfied if our
model can also generate diverse samples that are suitable different from X . In some
cases, the model can be estimated explicitly and sometimes it can generate samples
implicitly. Other models are capable of doing both. GANs provide no estimate of the
model but are capable of generating new data without knowing it.

Goodfellow [67] provides a taxonomy of common deep generative models show in
Figure 2, divided into implicit and explicit models. GANs are designed to remedy most
of the disadvantages that come with explicit models and other Markov chain models.

2.4.2 Explicit models
Explicit models specify or approximate a parameterised log-likelihood representation
of the data [69]. Parameters are then estimated and learned from the data and this
requires a maximum likelihood estimation which integrates over the entire data space
and this may be intractable [111]. These approximation techniques may not always
yield the best results as some of them rely on Markov chains which are time-consuming
[69].

Two popular tractable models are fully visible belief networks (FVBNs) [56] and
nonlinear independent component analysis (ICA). Approximate methods improve on
the design of tractable models which can be computational intensive and limited [69,
123, 158]. Approximate methods use either deterministic i.e. variational inference or
stochastic approximations i.e. MCMC approaches. Variational inference involves the
use of Variational Autoencoders (VAEs) [99, 158] to approximate pmodel(x) using lower
bounds.
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Figure 2: Taxonomy of generative models

2.4.2.1 FVBNs FVBN estimates the PDF of the training data pmodel(x) into a de-
composed product of one-dimensional probability distributions. This model outputs
a probability for each possible value if x is discrete and outputs a network of parame-
ters of a simple distribution if x is continuous. Using the generated model, sampling is
done one step at a time, conditioned on all previous steps [69].

The problem with these models is their computational complexities as they need
to generate one point at a time. Other problems include poor learning representations,
over-emphasizing details over global data and not closely reflecting the true genera-
tion process [67]. Moreover, these models have been more useful for image synthesis
than structured data sets such as tabular data [144]. GANs are known to provide new
samples in parallel, thus yielding greater speed of generation [67, 111].

2.4.2.2 Non-linear ICA Non-linear ICA involves defining some continuous non-
linear transformations of data between high dimensions and lower dimensional spaces.
The distribution of the data pmodel is transformed into a distribution of a latent space
z defined by pz(g) where g is some tractable transformed version of pz . The challenge
in ICA is finding tractable distributions in the latent space and these are limited [68].
GANs are known to have fewer restrictions than these models [14, 67, 69].

2.4.2.3 Variational Autoencoders VAEs, along with FVBNs and GANs, are three of
the most popular approaches for sample generation. VAEs are an extension to AEs [12,
105, 158]. AE learns useful representations of the data by encodingX into a compressed
latent space z using q(z|x) and then decoding z back intoX using p(x|z) by minimising
the reconstruction error between the original data and the deconstructed data [12]. VAE
maximizes the following function :

log p(x) ≥ Ez∼q(z |x)

[
log p(x|z) + log p(z)− log q(z)

]
(2)

Unlike auto-regressive models, VAEs are normally easy to run in parallel during train-
ing and inference [68, 105, 158]. Conversely, they are normally harder to optimize than
auto-regressive models [68, 123]. The encoder converts the input to latent space repre-
sentations through the mean and variance and samples can be created from the learned
representation. VAEs have been criticised to be generating blurry samples and are in-
tractable [68, 166].
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2.4.2.4 Boltzmann Machines Boltzmann machines rely on the use of Markov chains
to model pmodel(x) and to sample from it [1, 78, 165]. A Markov chain is a process that
is used to generate samples by repeatedly drawing a sample from a transition operator
[64]. A Boltzmann machine is an energy-based function defined as:

pmodel(x) = exp
(
−E(x)

)
/Z (3)

where E(x) is an energy function and Z is a normalizing factor to ensure that pmodel(x)
sums to one [1, 68].

These methods include Restricted Boltzmann machine (RBM) [1] and Deep Belief
Networks (DBNs) [79, 80]. DBNs and RBMs are generative stochastic neural networks
that can estimate a PDF [1]. Samples are obtained through MCMC runs to convergence
and this can be very expensive to run [111]. These models were pioneers in early 2006
for deep generative models but they have been rarely used because of poor scale-ability
for higher dimension problems and high computational costs [68].

2.4.3 Implicit models
Implicit models learn to model the true distribution and define a stochastic procedure
to directly generate new data from a latent space. These models can be trained indi-
rectly without needing an explicit density function to be learned or defined. Some of
these models such as the Generative Stochastic Network (GSN) [14] involve MCMC
methods which impose greater computational cost and often fail to scale to higher di-
mensional spaces [68]. Generative Adversarial Networks (GANs) [69] and Generative
Moment Matching Networks (GMMNs) [111] are one of the few implicit probabilistic
models capable of sampling in parallel and in a single step.

2.4.3.1 GANs GANs were originally invented in a landmark paper by Ian Goodfel-
low in 2014 [69]. The setup of the framework uses an adversarial process to estimate
the parameters of two artificial neural network (ANN) [162] models by iteratively and
concomitantly training a discriminator (D) and a generator (G), as shown in Figure 3.

Figure 3: GAN operation

Through multiple cycles of generation and discrimination, both networks train
each other, while simultaneously trying to outwit each other [69, 126, 143, 207]. GANs
have two adversarial ANNs:

• G picks z from the prior latent space Z and then generates samples from this dis-
tribution using ANN;

10 International Actuarial Colloquium France, Paris 11-14 May 2020
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• D receives generated samples from G and the true data examples, and must dis-
tinguish between the two for authenticity.
Both D and G are ANNs which play a zero-sum game, where G learns to produce

realistic-looking samples and D learns to get better at discriminating between the gen-
erated samples and the true data. Once G is trained to optimality, it can create new
samples and augment the training data set. GANs can sample in parallel better than
other generative models, have fewer restrictions on the generator function, assume no
use of Markov Chains, no variational bounds unlike VAE and produce subjectively
better quality samples than other generative models [6, 67, 68, 69, 153, 166].

Whilst GANs are gaining popularity in many applications, they have notable is-
sues. GANs are notoriously difficult to train properly, difficult to evaluate, the likeli-
hood cannot be easily be computed, suffer from the vanishing gradient problem, mode
collapse, boundary distortion and over-fitting [6, 68, 166].

Mode collapse is when many latent noise values z are mapped to the same data
point x, leading to a lack of diversity in the samples that are created i.e. under-fitting.
The vanishing gradient problem occurs whenD becomes perfect in its training without
giving G the chance to improve. As a result, GANs may fail to converge and thereby
leading to poor generated samples [6]. Figure 4 provides a non-exhaustive taxonomy
of GAN variants and improved training, including common examples [35, 81, 85, 188].

Figure 4: Taxonomy of GAN variants

Salimans et al. [166] look at ways to improve GANs (called hacks) while other
authors propose variants to the vanilla GAN by changing the cost function, adding
gradient penalties (GPs), adding labels, avoiding over-fitting and finding better ways
of optimising GANs. The first extension of GAN was the Conditional GAN (cGAN)
which gave the generator the label in the latent space, making them class conditional
[129]. Until the introduction of Deep Convolutional GAN (DCGAN) [153], training
GANs was very unstable. DCGANs provide some further tricks using convolutional
and deconvolutional layers. Since then, more variants and heuristics were proposed.

Wasserstein GAN (WGAN) [6] proposes a different loss function, becoming the
most studied and widely used GAN architecture ever since [85]. WGAN has been
shown to give better quality of generated synthetic data than the vanilla GAN and
alleviating most of the GAN issues [6]. Gulrajani et al. [72] further amend WGAN
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through an addition of a GP to the cost function, coming with WGAN-GP.
In recent years, other loss functions which unify the GAN loss framework includ-

ing f-divergence [141], Integral Probability Metrics (IPMs) [85] and Relativistic GANs
(RGANs) [92], were proposed. The f-divergence measures the difference between pdata
and pg with a specific convex function f [141]. f-divergence GAN, IPMs and RGAN
are considered unified frameworks suitable for stronger generalization to other loss-
variants [124]. WGAN is a special class of IPMs and the most studied GAN. Other pop-
ular GAN loss variants include Least Squares GAN (LSGAN) [125], Boundary Equilib-
rium GAN (BEGAN) [17], Loss Sensitive GAN (LS-GAN) [150] and Energy-Based GAN
(EBGAN) [204].

Other advanced GANs include the revolutionary Progressive Growing GAN (Pro-
GAN) [94] which proposes a progressive growing and steps towards GAN perfor-
mance. Other variants include Self-attention GAN [200] and BigGAN [23] which
achieved tremendous performances on Imagenet data sets. There have been hybrids
of GANs and VAEs where VAEs are used to encode the latent space to come up with
VAE-GAN [105].

For further GAN reviews, Creswell et al. [35], Hitawala [81] and Hong et al. [85]
provide a comparative overview. Lucic et al. [120] conduct an in-depth study on GANs
and note no significant performance differences on the GANs studied. There are over
300 GAN variants and it is impossible to review all of them.

2.4.3.2 GMMNs GMMNs minimize the maximum mean discrepancy (MMD) be-
tween the moments of pdata and pmodel and are known to be simpler than other gen-
erative models [111]. Moment matching evaluates whether the moments of the true
distribution ptrue(x) match those of the data pdata(x) through MMD. This approach is
similar to GANs in terms of training except using a different loss function which leads
to faster sampling. However, GMMNs have received less attention than GANs and
VAEs, limiting their sample generative scheme [6, 68, 81].

2.4.4 Summary

There are a number of deep generative models for synthetic sample generation. Some
of the models are explicit with an intractable likelihood and inference. Some models
are only approximate and generate blurry samples. Other methods do not sample in
parallel, are complex and rely on Markov chains which are time-consuming. GANs are
attractive as they do not make any explicit density estimation and they remedy most
of these issues. GANs have generated extremely good examples in many domains.
Section 2.5 reviews these GAN applications.

2.5 Applications of GANs

GANs are powerful generative models which generate realistic-looking samples with
a random vector z. We do not to know the format and the structure of the model nor
do we make any mathematical assumptions. This allows GANs to be widely applied
in many areas. This section reviews these varied GAN applications, with a particular
focus on how GANs may be extended for actuarial use.

Table 3 provides a summary of various areas where GANs have been applied.
The most successful applications of GANs are in computer vision but there has been
wider extensive applications in other domains. The details of these applications are
introduced as follows.
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Application Method
Image translation DiscoGAN [97], DualGAN [193], Pix2pix [195], CycleGAN [207]
Super resolution SRGAN [106], Cycle-in-Cycle GAN [177], ESRGAN [190]
Image synthesis BigGAN [23], ProGAN [94], ACGAN [143], SAGAN [200]
Object detection MTGAN [9], Perceptual GAN [109], Segan [147]
Object transfiguration GP-GAN [41], GeneGAN [205]
Joint image generation Coupled GAN [117]
Video generation VGAN [184], MoCoGAN [181], Pose-GAN [186]
Text to images PSGAN [16], PS-GAN [90], TAC-GAN [152], Stack GAN [201]
Facial attributes Face aging [4, 63, 77], StarGAN [30], DR-GAN [180], DCGAN [153]
Music generation MuseGAN [44], ORGAN [71], SeqGAN [108, 197],
Text generation RankGAN [115], C-RNN-GAN [133], RelGAN [140]
Speech conversion VAW-GAN [86]
Speech enhancement SpecGAN [22], WaveGAN [43], GANSynth [48], SEGAN [147]
Time series RCGAN [49], Value-at-Risk [59], Stock prediction [206]
Information retrieval IRGAN [187]
Domain adaptation DANN [2], CyCADA [83], DualGAN [193]
Semi-supervised learning Triple-GAN [31], [60], CatGAN [118], VAT [132]
Missing data imputation HEXAGAN [87], MisGAN [110], VIGAN [169], GAIN [196]
Privacy preservation Privacy-preserving GANs [10], Privbayes [202]
Anomaly detection GANomaly [3], DOPING [113], AnoGAN [168]
Reinforcement Learning GAIL [172]
Medical segmentation SCAN [36], SegAN [191]
Fashion [194], StyleGAN [93]
Art GauGAN [146]
Medicine Health records [7, 8], Drug discovery [15], DNA design [96]
e-Commerce eCommerceGAN [104]
Data augmentation DAGAN [5], BAGAN [126], GAMO [136], tableGAN [145]
Joint distribution DiscoGAN [97], Coupled GAN [117], CycleGAN [207]
Continual learning Deep generative replay [170]
Steganography Steganographic GAN [183], CycleGAN [32, 207]

Table 3: Taxonomy of GANs applied in various topics

2.5.1 Image Generation

GANs have been highly successful for the generation of realistic images after being
trained on samples images. For example, if we want to generate new images of cats,
we can train a GAN on thousands of samples of samples of cats. Once the training has
finished, the generator network will be able to generate new images that are different
from the images in the training set.

The original GAN was formulate for this purpose but it had mode collapse, van-
ishing gradients and unstable training issues. Conditional GANs [129, 143] and DC-
GAN [153] significantly improve the vanilla GAN, thereby increasing sample quality
and diversity. Since then, more GANs have been devised, with impressive results for
image generation. Image generation finds applications in marketing, face aging, logo
generation, entertainment, social media, anime character creation and so on. This finds
immediate applications for short-term insurance and banking.
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2.5.2 Image Translation
To convert an image content from one domain to another, an image-to-image transla-
tion approach was proposed by Yoo et al. [195] using cGANs, which is named pix2pix.
Experiments have shown that pix2pix can be effective not only in graphics tasks but
also in vision tasks. Pix2pix requires the training space to be strictly paired in the X
and Y spaces. However, such paired data is hard to find.

Based on this situation, DiscoGAN [97], DualGAN [193] and CycleGAN [207]
adopt the idea of cyclic consistency, which can use unpaired data to train the mapping
from X space to Y space. Choi et al. [30] proposed a StarGAN, which can solve the
problem of image translation among multi-domains by learning one model. The use of
StarGAN in the tasks of facial expression synthesis and facial attribute transfer has had
surprising effects. Figure 5 shows an example of CycleGAN application, converting
different images to another.

Figure 5: Images generated by CycleGAN from the original paper [207]

These GANs can be useful in short-term insurance domains such as in agriculture,
weather patterns, satellite images, telematics, claims assessment and in medicine for
medical imaging. CycleGANs can be used to generate even data sets that have no
alignment, e.g. convert zebras to horses, winter to summer and so on.3 In insurance,
these GANs can be used to convert claims frequency data to claims amounts and vice
versa, thereby transferring styles between different data sets.

Similarly, one can use DualGAN or DiscoGANs to understand profiles of differ-
ent insurance lives by switching between claiming and non-claiming lives, lapsing and
non-lapsing lives, mortality and morbidity etc., through learning one model which de-
scribes the two data spaces. Image translation is a very successful area of GANs and
this task can enhance short-term insurance images.

2.5.3 Image Super Resolution and Synthesis
Image synthesis is an important direction since the invention of GANs. How to gen-
erate realistic image and face samples has always been the problem that needs to be
addressed. GANs have been highly successful on image synthesis since the improve-
ment of GANs using DCGAN [153] and cGAN [129]. Most structures are loosely based
on DCGAN, especially for images.

3https://junyanz.github.io/CycleGAN/
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A Super-Resolution Generative Adversarial Networks (SRGAN) [106] takes a low-
resolution image as input, and generates a high-resolution image with 4x up-scaling.
Wang et al. [190] proposed an Enhanced Super-Resolution Generative Adversarial Net-
works (ESRGAN) to improve the texture information generated by SRGAN, which
was shown to not being real enough and accompanied by some noise. The ESRGAN
achieved better performance than SRGAN. These GANs can be used to improve the
resolution of any image data set.

ProGAN [94] improves the speed, stability and variation of GAN training. Pro-
GAN progressively trains the generator and the discriminator on low-resolution im-
ages and then incrementally adding more layers throughout the training process to in-
crease the resolution. ProGAN manages to generate full-high-definition photo-realistic
images, with deep learning grandfather Yoshua Bengio lauding it as ”too good to be
true”. An example practical application of ProGANs is the high-resolution mammo-
gram synthesis for breast cancer screening conducted at Kheiron Medical Technologies
in London [100, 101]. A paper entitled ”GANs for Medical Image Analysis” [95] shows
how these GANs are used in 62 other medical applications.

Self-Attention GAN (SAGAN) [200] allows attention-driven long-range depen-
dency modelling for task generations. BigGAN is similar to SAGAN but has high
scaling capabilities. BigGAN [23] and Style GAN [93] have since made tremendous
advances in the quality of GANs. These are current state-of-the-art models with quite
high quality results. Style GAN has been used to generate high-quality fashion model
images wearing custom outfits [194]. For telematics and short-term insurance such
as car, property and agricultural insurance, these GANs would have tremendous ad-
vantages for image synthesis. Other immediate applications are in banking for facial
recognition.

2.5.4 Object Detection and Video Generation
GANs have been used for generating videos, video targeting and in video applications
[40, 181, 184, 189]. Other applications include texture synthesis using Periodic Spa-
tial GAN (PSGAN) [16], object detection using Segan [191] or Perceptual GAN [109],
portrait drawing from face photos [180] and many more image and vision others. For
object detection, Segan has immediate applications for semantic segmentation in driv-
ing conditions, thereby boosting car insurance claim predictability.

2.5.5 Sequences
GANs have tremendous achievements in natural language processing (NLP), music,
speech, voice and time series. This section briefly touches on some of the proposed
GANs for these tasks, the most interesting being time series generation for actuarial
consideration.

2.5.5.1 Natural Language Processing In NLP, an information retrieval GAN [187] is
proposed while text generation using RankGAN [115] and speech language processing
using SEGAN [147] were also accomplished. GANs have also been used for music
generation such as MuseGAN [44], Object-Reinforced GAN (ORGAN) [71], SeqGAN
[108], continuous recurrrent neural network GAN (C-RNN-GAN) [133] and MidiNet
[192]. Such applications have immediate applications for the entertainment industry
such as movie theme songs, reducing costs and improving operational efficiency.

GANs have also been used for speech and audio analysis, such as synthesis [164],
enhancement [147] and recognition [42]. GANs also learn text-to-image generation [39,
152] or image-to-text [28], too. Such applications can be used to convert an image taken
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from a car insurance damage/scratch, to useful text description with ease.

2.5.5.2 Time Series The modeling and statistical distribution generation, time series
and stochastic processes are widely used by financial firms for risk management, fi-
nancial projections, stock prediction, extreme event monitoring and monetary policy
making [59]. Traditionally, Autoregressive and Moving Average (ARMA), Exponen-
tial smoothing, Generalized Autoregressive Conditional Heteroscedasticity (GARCH),
Vector Auto Regression (VAR) and their variants, and more recently Recurrent Neural
Networks (RNN) [82], have been introduced and intensively studied and applied for
time series data [18].

However, most of these models are reliant on strong dependence on model as-
sumptions and model parameter estimation and, thus, are less effective in the estima-
tion of complex distributions with time-varying features [206]. GANs do not make
any explicit assumptions and are capable of learning the distributions and their depen-
dence structures in a non-parametric fashion. A number of studies have demonstrated
the use of GANs for time series prediction. Such models such as cGAN and Recurrent
GANs are appealing for calculating Value-at-Risk and Expected Shortfall for market
risk management [59], economic modelling [49], stock prediction [206] and others.

Suppose we wanted to simulate the evolution of a stock price for some particu-
lar asset using traditional simulations such as Monte Carlo. We would need to estimate
the mean and volatility of the returns using past price evolution and then simulate new
prices under the assumption that the returns follow a Gaussian distribution with the
estimated parameters. However, this normality assumption may not be entirely true in
practice where there is a tendency for higher observed probabilities for the tail events
than those predicted by the Gaussian distribution. We could change our assumption,
say into a student-t distribution, but neither would that assumption completely de-
scribe the reality. GANs are capable of replicating the price evolution without making
any model assumptions.

An immediate actuarial use is stochastic simulations and financial projections for
capital modelling, mortality projections, reserving, asset and liability management, sol-
vency projection and other time series generation tasks. GANs can be used to replace
Monte Carlo or stochastic simulations without the use of distributional assumptions.

2.5.6 Semi-Supervised Learning
The purpose of a Semi-Supervised GAN (SGAN) is to train the discriminator into a clas-
sifier which can achieve superior classification accuracy from as few labeled examples
as possible [173], thereby reducing the dependency of classification tasks on enormous
labeled data sets. It has been shown that an SGAN generalizes from a small number of
training examples much better than a comparable, fully-supervised classifier [31, 118,
132]. This has been lauded as the most useful GAN application with good performance
with a small number of labels on data sets [142, 166].

For imbalanced data sets such as mortality, morbidity, fraud, lapses, extreme
events, large claims and sub-standard risks, SGAN may offer a superior alternative
predictive model compared to ML models which require significant training data for
improved accuracy. Typically, one has to deal with imbalanced classes either through
synthetic sample generation using some heuristic method such as SMOTE [26], cost
sensitive adjustment to the evaluation metric or adding uncertainty margins which can
be subjective. Through the training of an SGAN, it is possible to have a sample gener-
ative scheme whilst having a classifier as well. This has tremendous advantages over
many generative and ML models.
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2.5.7 Data Augmentation

The availability of sufficient data in many domains is a necessity, especially where
predictive models are needed to make business decisions. Such models are built on
adequate training data for better generalization and meaningful accuracy [68]. Data
augmentation is a procedure to create synthetic cases to augment the training data and
increase its size, especially for those data points that are lacking. This is where GAN
shines - the ability to create new samples and adequate data sets [53, 69].

There are two main strategies to check if this augmentation really helped some-
thing: we can train our model on fake data and check how well it performs on real
samples. We can also train our model on real data to do some classification task and
only after check how well it performs on generated data. If it works well in both cases
— you can feel free to add samples from the generative model to your real data and
retrain it again — you should expect gain of performance.

Recently, a number of papers have applied GANs to augment various data sets,
with remarkable results on the performance of the predictive models applied after [5,
45, 53, 126, 136]. Similarly, GANs can be used to augment actuarial data sets and boost
actuarial models, making them more accurate and less biased. In this work, we demon-
strate how this can be done for a number of data sets, described in section 4.

2.5.8 Anomaly Detection

Anomaly detection is the identification of rare items, events or observations which raise
suspicions by differing significantly from the majority of the data. Anomaly detection
finds extensive use in a wide variety of applications such as fraud detection for credit
cards, insurance or health care, intrusion detection for cyber-security and fault detec-
tion in safety critical systems.

The importance of anomaly detection is due to the fact that anomalies in data
translate to significant (and often critical) actionable information in a wide variety of
application domains. There are a number of these methods such as clustering-based,
classification-task, nearest neighbor, spectral or statistical, but most of them have rather
strong assumptions and long training times.

Main generative models like VAE or GAN consist of two parts. VAE has an en-
coder and the decoder, where the encoder basically models the distribution and the
decoder reconstructs from it [105]. GAN consists of the generator and the discrimi-
nator, where the generator models the distribution and the discriminator judges if it’s
close to the training data [69]. They are pretty similar in some way — there is modeling
and judging part (in VAE we can consider reconstructing as some kind of judgement).

The modeling part is supposed to learn the data distribution. What will happen to
the judging part if we give it some sample not from the training distribution? In case
of a well trained GAN, the discriminator will tell us 0, and reconstruction error of VAE
will be higher than average one on the training data [3]. Our unsupervised anomaly
detector is then easily trained and evaluated. We can feed it with some steroids like
statistical distances if we want.

In medicine, Schlegl et al. [168] proposed an AnoGAN for anomaly detection of
medical images, and learned the characteristics of lesions by learning the characteristics
of health data sets. Figure 6 shows how AnoGAN works. Akcay, Atapour-Abarghouei,
and Breckon [3] present GANomaly for anomaly detection in visual noise, noting a
significant improvement on detecting anomalies on various data sets. These methods
have potential applications in bio-medicine, fin-tech, video surveillance, network sys-
tems, fraud detection, lapse prediction and claiming likelihood in insurance etc. A
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Figure 6: AnoGAN for medical images anomalies from the original paper [168]

GAN useful for anomaly detection can rival other anomaly detection techniques.

2.5.9 Privacy Preservation
Data of a lot of companies can be secret (like financial data that makes money), con-
fidential or sensitive (medical data that contains patients diagnoses). Sometimes we
need to share it with third parties like consultants or researchers. If we want to share
a general idea about our data that includes the most important patterns, details and
shapes of the objects, we can use GANs directly to sample examples of our data to
share with other people without sharing identifiable features. This way we won’t share
any exact confidential data, just something what looks exactly like it.

Privacy-preservation GANs are capable of accomplishing this task [10]. In actuar-
ial valuation models where model points are used to determine the amount of money
to hold for an individual/groups, such GANs may be useful for the creation of syn-
thetic samples to be fed into the valuation model, without needing the details of any
policy.

2.5.10 Missing Data Imputation
Missing data causes an issue in analysis as most standard data analytic methods are
not designed for missing data. Techniques such as single imputation (SI) and multiple
imputation (MI) [24, 159, 175] exist but there is no consensus on which of the MI method
is superior even though MI is known to be better SI [107, 159, 167].

Generative Adversarial Imputation Net (GAIN) [196] provides an alternative gen-
erative modelling approach to create new cases that can be used to impute missing
information. MisGAN [110] also creates new imputed cases. VIGAN [169] deals with
data that are collected from heterogeneous sources, resulting in multi-view or multi-
modal data sets where missing data occurs in a number of these sources. These meth-
ods were shown to be better than SI/MI methods, thereby improving the effectiveness
of ML algorithms trained after. If you also have an image that has some missing parts,
GANs can help you to recover these sections.

2.5.11 Domain Adaptation
It is quite possible that the training data used to learn a classifier has different distribu-
tion from the data which is used for testing. This results in degradation of the classifier
performance and highlights the problem known as domain adaptation [84]. In domain
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adaptation, the training and test data are from similar but different distributions. This
area has become interesting for GANs in the past few years.

These methods include CoGAN, CycleGAN, DiscoGAN, DualGAN and StarGAN
which can be used for multiple domains. With these methods, one can transfer an algo-
rithm learned from a different data set to a new one and achieve similar performance.
Such approaches are also able to learn representation adaptation, which is learning
feature representations that a discriminator cannot differentiate which domain they be-
long to [182]. By using synthetic data and domain adaptation, the number of real-world
examples that are needed to achieve a given level of performance is reduced signifi-
cantly, utilising only randomly generated simulated points [83]. Domain adaptation
can learn transfers between different domains, by synthesising different data sets. This
can be useful in combing public data sets or other market data with internal company
data in actuarial firms.

2.5.12 Joint Distributions

Coupled GAN (CoGAN) [117] was proposed to learn the joint distribution of two-
domain images. This GAN architecture is composed of two GANs, each of which
synthesises images in one domain. While CycleGAN, DiscoGAN and DualGAN fo-
cus on image-to-image translation using two domains, StarGAN translates to multiple
domains using a single model.

These GANs allow the possibility of combining two different data sets into one.
For example, one can combine mortality experience of limited underwritten lives with
fully underwritten and still be able to learn those features peculiar to a particular prod-
uct. This task may have advantages compared to correlation measures or copulas. This
GAN direction will have tremendous applications for combining multiple data sets and
from different domains [32, 117, 193].

2.5.13 Actuarial Science

Given the above taxonomy of GAN applications, we are interested in whether there
is scope for GAN applications in actuarial science, by borrowing some of the architec-
tures and applying them on actuarial disciplines. Figure 7 depicts actuarial areas where
GANs can be useful.

To our knowledge, there has been limited applications of GANs in traditional ac-
tuarial areas such as insurance and health care. This is compounded by the fact that
GANs have been highly successful on computer vision, with less emphasis on tabu-
lar data sets. However, there have been recent applications of GANs on other tabular
data sets such as airline passengers [134] and medical records [7]. GANs can equally
be adopted for similar tasks to boost limited data sets and improve actuarial models,
especially in areas where models are needed to make business decisions. In particu-
lar, GANs could allow less reliance on using stochastic simulations that are based on
subjective distributions and err less on margins used.

3 Methodology

This section describes in detail the theoretical operation of GANs, their challenges and
tricks to improve their training. Throughout this paper, it is assumed that both GAN
networks are implemented with ANNs. For comparative purposes, we also imple-
ment a popular synthetic data generative mechanism using Synthetic Minority Over-
sampling Technique (SMOTE) [26].
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Figure 7: Potential GAN applications in actuarial disciplines

3.1 SMOTE

This section describes the theoretical operation of SMOTE, for comparative purposes
with the GAN applied in this work.

Considering a random minority instance x, a new instance s is generated by con-
sidering its k-nearest neighbors (NNs). These k-NNs are found by using the Euclidean
distance metric. Initially, an instance y is generated at random from the k-NNs. Then a
new synthetic minority instance s is generated as follows:

s = x+ α (y − x) (4)

where α is randomly generated from the Uniform distribution [0, 1]. SMOTE parame-
ters are the value of k and the number of minority cases to generate. These can be tuned
to ensure an optimal metric is achieved. The number of k-NNs can be varied such that
an optimal metric is found, whilst restricting the number of generated instances to en-
sure a balanced class distribution.
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Figure 8: SMOTE operation

3.2 Vanilla GAN

This section describes the original GAN formulation, called MiniMax GAN (MM-
GAN). This is the baseline model over which all other variants are based.

3.2.1 The Discriminator
The discriminator (D) receives generated samples from a generatorG and the true data
examples from pdata(x), and must distinguish between the two for authenticity through
a deep ANN [69]. The resulting output Dθd(x) for an input x is the probability of x
being sampled from pdata(x) instead of pg , where pg is the implicit distribution defined
by G. The vector Θd represents learned parameters from D.

The discriminator’s goal is to yield D(x) near 1 for x ∼ pdata and D(G(z)) closer
to 0 for pz(z) using the sigmoid function in the output layer. This is achieved by max-
imising D’s loss over θd:

JMM−GAN
D = EX∼pdata(x)

[
logDθd (x)

]
+ EZ∼pz(z)

[
log(1−Dθd(Gθg(z))

]
(5)

3.2.2 The Generator
The generator (G) randomly picks a sample z from the prior latent space defined by
p(z) and then generates samples from this distribution using an ANN. This deep ANN
must learn the parameters Θg given an input z ∼ pz(z), that will give the outputGθg(z).
G is trained to foolD i.e. to makeD’s output for fake/generated sampleD(G(z)) closer
to 1. The parameters of G are learned by minimising G’ loss over Θg :

JMM−GAN
G = EZ∼pz(z)

[
log(1−Dθd(Gθg(z))

]
(6)

3.2.3 GAN Loss
Combining the losses for D and G, GANs solve the following minimax game in alter-
nate steps through GD:

min
θg

max
θd

EX∼pdata(x)

[
logDθd(x)

]
+ EZ∼pz(z)

[
log(1−Dθd(Gθg(z))

]
(7)

The above losses for D and G are the original formulation proposed by Goodfellow
in 2014, called minimax GAN (MM-GAN). Since we are minimising over θg and max-
imising over θd, training of GANs alternate between GD onG and gradient ascent onD
[68]. Typically, for every training of G, D is trained k times although an optimal choice
is debatable among researchers. This is shown in Algorithm 1.
Remark 1. Gradient based updates on can be accomplished using any of the GD optimisers
reviewed earlier. Typically, SGD with Momentum for D, RMSProp or Adam for G tend to
work well in practise [69, 153].
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Figure 9: GAN training

3.2.4 Non-Saturating GAN
While the above loss function is useful for theoretical results, unfortunately it does not
work well in practise and there are challenges getting the GAN to convergence, sta-
bilise its training and getting diverse samples [6, 69, 129, 153, 166]. In practice, rather
than training the above loss function for G, to provide better gradients in earlier train-
ing, Goodfellow et al. [69] suggest to maximise the following objective function for G
instead:

JLS−GANG = EZ∼pz(z) log
(
Dθd(Gθg(z)

)
(8)

This version of GAN is called non-saturating GAN (NS-GAN) and is typically used
as the benchmark in most studies and in practise. This leads to the following NS-GAN
loss function:

max
θg

max
θd

EX∼pdata(x)

[
logDθd(x)

]
+ EZ∼pz(z) log

(
Dθd(Gθg(z)

)
(9)

With this new loss function, we alternate between gradient ascent on D and gra-
dient ascent on G. The algorithm presented below is based on the original MM-GAN
formulation, however, it can easily be tweaked to represent NS-GAN.

3.2.5 Optimal Solution
Theoretically, it can be shown that for pg = pdata, the GAN zero-sum game in Equation
9 has a global optima. Given enough capacity for both networks and D is trained to
optimality for a fixedG, convergence of the GAN algorithm is guaranteed [69, 124, 129,
141, 153]. The optimal discriminator D∗G(x) for a fixed G is:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(10)

Assuming that D is perfectly trained and if we substitute D∗G(x) into Equation 9 for
G’s loss, this gives rise to the Jensen-Shannon (JS) divergence [114]. The JS divergence
can be written as a function of the Kullback-Leibler (KL) divergence [102, 103].

Definition 1. The KL divergence between two probability distributions pdata and pg is defined
as

KL(pdata, pg) = DKL

(
pdata||pg) =

∫
pdata(x) log

(
pdata(x)

pg(x)

)
dx

22 International Actuarial Colloquium France, Paris 11-14 May 2020



Generative Adversarial Networks for Actuarial Use

Algorithm 1 Mini-batch SG ascent of GANs with the original objective for MM-GAN.
The number of steps to apply to D, k, is a hyper-parameter. For every training of G, we
train D k times. Goodfellow et al. [69] used k = 1.

1: for number of epochs do
2: update the discriminator
3: for k steps do
4: • Sample mini-batch ofm noise samples {z(1), . . . , z(m)} from the noise prior

pg(z).
• Sample mini-batch of m true examples {x(1), . . . , x(m)} from the training

data distribution pdata(x).
• Update the discriminator D by ascending its stochastic gradient on these

mini-batches:

∆θd

1

m

m∑
i=1

[
logD

(
xi
)

+ log

(
1−D

(
G(zi)

))]
.

5: end for
6: update the generator
7: • Sample mini-batch of m noise samples {z(1), . . . , z(m)} from the noise prior

pg(z).
• Update the generator by descending its stochastic gradient computed on this

mini-batch:

∆θg

1

m

m∑
i=1

log

(
1−D

(
G(zi)

))
.

8: end for

Definition 2. The JS divergence between two probability distributions pdata and pg is defined
as

JS(pdata, pg) = DJS

(
pdata||pg) =

1

2
KL

(
pdata,

pdata + pg
2

)
+

1

2
KL

(
pg,

pdata + pg
2

)
If we substitute D∗G(x) into Equation 9, the minimum loss for G is reached if and only

if pg = pdata, thus one can show that:

JG = − log 4 + 2JS
(
pdata, pg

)
(11)

This equation tells us that when D has no capacity limitation and is optimal, the GAN
loss function measures the similarity between pdata and pg using JS divergence. How-
ever, although the above results provide a nice theoretical result, in practise, D is rarely
ever fully optimal when optimising G [69]. Thus alternative GAN architectures have
been proposed to fix this issue and to get closer to optimality. Below we describe what
causes this failure to convergence and how to fix it.

3.3 Challenges with GANs
GANs are notoriously difficult to train properly, difficult to evaluate, the likelihood can-
not be easily be computed, suffer from the vanishing gradient problem, mode collapse,
boundary distortion and over-fitting [6, 35, 68, 81, 85, 112, 166]. This section describes
key challenges on GAN training.
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3.3.1 Mode collapse
Mode collapse is when many latent noise values z are mapped to the same data point
x, leading to a lack of diversity in the samples that are created i.e. under-fitting. This
is regarded as the most significant problem with GANs [112, 124]. Many studies have
spent lots of time in varied contexts to fix this.

3.3.2 Vanishing gradient
This occurs when D becomes perfect in its training without giving G the chance to
improve. As a result, GANs may fail to converge and thereby leading to poor generated
samples [6].

3.4 Improved GAN Training

There are many GAN architectures which avoid the problems that come with the
vanilla GAN. We briefly describe some of the most common and popular GAN so-
lutions. Given the vast number of taxonomies, we are not able to cover all of them but
only discuss the most popular and those subsequently used in this work.

3.4.1 Conditional GANs
The first extension of GAN was the Conditional GAN (cGAN) which gave the genera-
tor the label Y in the latent space, making them class conditional [29, 129, 143]. Most
of the GAN variants can be modified to include cGAN. cGAN allows to create diversi-
fied samples and forcing G to create specific samples and thereby fixing mode collapse
problem. There are other conditional GANs such as Auxiliary Classifier GAN [143]
and InfoGAN [29] for various tasks. These versions have been highly useful in many
domains such as image synthesis and face aging.

3.4.2 Deep Convolutional GAN
Given that DCGANs use CNNs which are typically for images, we do not review this
architecture in detail as our main focus in on tabular data. However, the following can
be noted from the DCGAN paper: (1) Use Adam optimiser instead of SGD with Mo-
mentum as it seems to outperform other GD optimisers in practice; (2) Where possible,
use batch normalisation in most hidden layers of both networks and (3) Use leaky ReLU
for D and ReLU for D in the hidden layers. This process tends to lead to better speed,
stable training and better performance of GANs [153]. As a result, most GAN variants
have the structure of a DCGAN or use these recommendations one way or another.

3.4.3 Loss Variants
There are a number of GAN architectures which change the loss function to improve
GAN training and stability. The loss function for GAN measures the similarity between
pdata and pg using JS. Unfortunately, JS tends not to be smooth enough to ensure a stable
training [85, 124]. There are a number of GAN loss variants which have been proposed
over the years. Broadly, there are two loss function groups with better properties i.e.
f-divergence [141] and IPM [135]. Figure 10 shows some of these loss variants.

Among these loss groups, WGAN is arguably the most popular and well-studied
[81, 85, 188]. WGAN is considered a general unified framework under the recently
proposed Relativistic GAN (RGAN) [92]. Thus we adopt to describe WGAN as it has
become the most widely used GAN architecture since DCGANs.

3.5 WGAN

This section describes WGAN and its improved training using WGAN-GP.
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Figure 10: GAN loss variants

3.5.1 Wasserstein Distance
IPM generalises a critic function f belonging to an arbitrary function class where
IPM measures the maximal distance between two distributions under some functional
frame f [81]. Among the IPMs, the Wasserstein distance is the most common and
widely used metric [124]. Informally, the Earth mover (EM) [160] distance W (pdata, pg)
measures the minimal changes needed to transform pg into pdata. More formally, EM
between two probability distributions pdata and pg is:

W
(
pdata, pg

)
= inf
γ∼Π(pdata,pg)

E(x,y)∼γ
[
‖ x− y ‖

]
(12)

where Π(pdata,pg) represents a set of all joint probability distributions whose marginal
distributions are respectively pdata(x) and pg(x). Precisely, γ(x, y) is a transport plan
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i.e. percentage of mass that should be moved from x to y to transform pg into pdata.
The infimum in Equation 12 is intractable as it is tricky to exhaust all the elements of
Π(pdata,pg) [6]. This is solved using the following functional format:

W
(
pdata, pg

)
= sup
‖f‖L≤1

Ex∼pdata
[
f(x)

]
− Ex∼pg

[
f(x)

]
(13)

where the supremum is taken over a 1-Lipschitz function f . A function f is 1-Lipschitz
if for all x1, x2 : |f(x1)− f(x2)| ≤ |x1 − x2|.

3.5.2 The Critic
In WGAN, D’s output is not a probability anymore but can instead be any number
and for this reason, D is typically called the critic. The WGAN critic tries to maximise
the difference between its predictions for real samples and generated samples, with
real samples scoring higher. Arjovsky, Chintala, and Bottou [6] force the critic to be
1-Lipschitz continuous for the loss function to work well:

JWGAN = max
w∈W

EX∼pdata(x)

[
D(x)

]
+ EZ∼pz(z)

[
1−D(G(z))

]
(14)

where W is the set of 1-Lipschitz continuous functions. Typically, to enforce the Lip-
schitz constraint, the critic weights w are clipped to lie within a small range, usually
[−0.01, 0.01] after each training batch [6, 72].

The critic is trained to convergence so that the gradients of G are accurate, thus re-
moving the need to balance the training of G and D by simply training D several times
between G’s updates, to ensure it is close to convergence. Typically, 5 critic updates to
1 generator update is used [6]. The WGAN training algorithm is shown in Algorithm
2 as per the original paper [6]. WGAN used the RMSProp version of gradient GD with
a small learning rate and no momentum [6]. However, Adam may also be used as it is
a combination of RMSProp with Momentum.

3.6 Improved WGAN Training

Even though WGAN has been shown to stabilise GAN training, it is not generalized
for deeper training due to weight clipping which tends to localise most parameters at
−0.01 and 0.01 [72, 124]. This effect dramatically reduces the modelling capacity for D.
Gulrajani et al. [72] further amends WGAN through an addition of a gradient-penalty
(GP) to the loss function, coming with WGAN-GP. In total, three changes are made
to WGAN critic to convert it to WGAN-GP: include a GP to the loss function; do not
clip critic weights; and do not use batch normalisation layers in the critic. WGAN-GP
defined using the following loss function:

EX∼pdata(x)

[
D(x)

]
+ EZ∼pz(z)

[
1−D(G(z))

]
+ λEx̃∼pdata

[(
‖ ∆D(x̃) ‖2 −1

)2] (15)

where x̃ samples uniformly along the straight line between points sampled from pdata
and pg and λ is the GP term. Gulrajani et al. [72] show a better distribution of learned
parameters compared to WGAN and this method has been the default method in most
GAN loss variants.

We adopt the conditional version of WGAN-GP, called WCGAN-GP, as an alterna-
tive to current actuarial/statistical approaches for synthetic sample generation. Once
WGAN-GP is trained to convergence, G can be used to create new samples by feeding
it the latent space Z.
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Algorithm 2 Wasserstein GAN. Default experiments used η = 0.00005, c = 0.01, m =
64 and ncritic = 5.
Require: η, the clipping parameter c, the batch size m, the number of iterations of the

critic per generator iteration nd.
Require: initial critic parameters w0, initial parameters of the generator Θ0

while θ has not converged do
2: for t = 0, · · · , ncritic do

Sample mini-batch of m noise samples {z(1), . . . , z(m)} from the noise prior
pg(z).

4: Sample mini-batch of m true examples {x(1), . . . , x(m)} from the training data
distribution pdata(x).

gw ← ∆w

[
1
m

∑m
i=1 fw

(
x(i)
)
− 1

m

∑m
i=1 fw

(
gθ

(
z(i)
))]

w ← w + η.RMSProp (w, gw)
w ← clip (w,−c, c)

end for
6: Sample mini-batch of m true examples {x(1), . . . , x(m)} from the training data

distribution pdata(x).
gθ ← −∆θ

1
m

∑m
i=1 fw

(
gθ(z

(i))
)

θ ← θ + η.RMSProp (Θ, gθ)
end while

4 Experiments

This section outlines the experiments conducted, showing a popular GAN applica-
tion for data augmentation and boosting predictive models. We compare WGAN with
a popular synthetic data generation mechanism i.e. SMOTE [26]. This exercise can
be similarly adopted for any actuarial modelling problem such as mortality, morbid-
ity, medical segmentation, credit risk, extreme events, regression, Value-at-Risk, and
anomaly detection in insurance, banking, investment, banking and health care.

4.1 Data Sets

We considered 5 publicly available imbalanced data sets from the Machine Learning
Repository UCI. The data sets are described below and shown in Table 4.

4.1.1 Credit Card Fraud

European public credit card fraud transactions made in 2013 are utilised [37]. This data
is highly imbalanced, with 492 fraudulent transactions out of a total of 284, 807 transac-
tions,representing a mere 0.172% of fraud cases. This data set contains 31 anonymised
features (Time, Amount, V0,V1,...V28) and the Class indicator showing 1 for frauds and
0 for non-fraudulent cases. All the variables are numeric.

4.1.2 Pima Indians Diabetes

This data set contains the prediction of the onset of diabetes within 5 years in Pima
Indians given some medical details, representing 34.90% of diabetic cases out of a total
of 768 samples [171]. There are 8 independent variables.
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4.1.3 German Credit Scoring
This data comes from the German credit scoring from the UCL Machine Learning
Repository. There are 1000 observations with 20 independent variables. The dependent
variable is the evaluation of customer’s current credit status which indicates whether a
borrower’s credit risk is good or bad.

4.1.4 Breast Cancer Wisconsin
This data represents the characteristics of a cell nuclei that is present in the digitised
image of a breast mass [176]. The data is used to predict the presence of benign or
malignant cancer, with 37.25% being malignant samples from a total of 569 cases.

4.1.5 Glass Identification
This data set determines whether the glass type is float or not in term of their oxide
content [51]. There are 32.71% of float glass types out of a total of 214 cases.

Data set Majority cases Minority cases Number of features
Credit Card Fraud 284,807 492 31
Pima Indians Diabetes 500 268 8
Glass Identification 144 70 9
German Credit Scoring 700 300 20
Breast Cancer Wisconsin 357 212 9

Table 4: Data sets used in the experiments

4.2 Scaling the data

Many ML methods expect data to be of the same scale to avoid the dominance of certain
variables and this can affect the accuracy of specific models [88, 131]. Normalisation re-
scales the data to the range between 0 and 1. Standardisation centers the data distribu-
tion to N(0, 1). We adopt normalisation as it does not assume any specific distribution.
This will potentially speed up convergence [68, 131].

4.3 Train-Test Split

ML models are usually trained and tested on unseen data. Two approaches to split the
data are cross-validation (CV) and train-test split [57]. CV divides the data into K sub-
sets that can lack sufficient credibility and can result in higher variability of predictions,
if the data size is too small [57]. Train-test split, however, can allow a larger subset of
the data to be used for estimating model coefficients and results in more reasonable
results [131].

Existing literature typically uses a 70%-90% train-test split, especially if the data
is large. This technique is simple, easy to understand and widely used, despite giving
noisy estimates sometimes [57, 68, 131]. CV is typically used to optimise parameters of
a classifier. This work adopts 75% training data and 25% testing data.

4.4 SMOTE Implementation

Over-sampling is performed on the 75% training data using the R imbalance library [34].
The R imbalance library contains functions for performing SMOTE and other variants.
The two parameters to tune are the number of neighbors and the over-sampling rate.
We used a default of 5 K-NNs for SMOTE [26]. We kept the over-sampling rate the
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same to ensure balanced class distributions within each data set. Using SMOTE, we
create additional synthetic cases to supplement the above data sets.

4.5 GAN Implementation

Given its popularity and wide use, WGAN is adopted for an alternative synthetic sam-
ple generation. Specifically, we adopt the conditional version of WGAN with GP, thus
we use WCGAN-GP [72, 129]. Below we describe how parameters are chosen and re-
sults generated.

4.5.1 Software
GANs can be implemented in a number of open-source neural-network libraries in
Python [54]. Due to its simplicity and faster computations, the high-level Keras li-
brary [55] with Tensorflow [178] back-end is chosen to implement WCGAN-GP. This is
trained using all minority cases of each data set.

4.5.2 The Generator
This section describes how the parameters for G are chosen.

4.5.2.1 Latent Noise The random noise for z is generated from N(0, 1) with 100 di-
mensions. This is based from GAN hacks which suggest to sample from a spherical
distribution [166].

4.5.2.2 Activation Function ReLU is adopted in the hidden layers [153, 166]. ForG’s
output later, tanh is adopted. No drop out or batch normalisation is applied following
advise from Gulrajani et al. [72] for WGAN-GP.

4.5.2.3 Layers The layers are chosen such that they are ordered in an ascending man-
ner forG. For simplicity, after a number of iterations, 3 layers were chosen for each data
set. In the first layer, there were 128 units, in the second layer 256 units and in the third
layer 512 units. These layers worked well in the experiments conducted. The output
layer had the data dimension of the data as the number of units.

Weights are initialised using the He initialisation method and ReLU is adopted
[76]. Adam is used to optimise the weights of G [153, 166]. We used default values
with β1 = 0.5 and β2 = 0.9 for G [98]. We used a batch size of 128 when optimising
the gradients for faster training [88]. Initial η for G was fixed at 0.00004. The number
of epochs were found to be 5, 000 where the GAN training was found to be stable.

4.5.3 The Critic
Leaky ReLu is adopted with a negative slope of 0.2 [121, 153]. As per the generator,
3 layers were used in the hidden layers. The layers were arranged in a descending
manner, with 512 units in the first layer, 256 units in the second layer and 128 units
for the last layer. The critic gives the output a single value using a linear function [6].
Adam was used with default parameters in Keras [55] as follows:

Parameter Value
η 0.00001
β1 0.5
β2 0.90
ε 10−8

Table 5: Adam parameters for the critic
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Critic weights were also initialised using the He method and a similar batch size as in
the generator was used. We pre-trained the critic 100 times at each adversarial training
step [6]. This ensures faster convergence at each step before G is updated. We used
WGAN with a GP with the default values as per the original paper [72]. The GP value
was left unchanged at 10. We call this model WGAN-GP. We found that after 5000
epochs, the losses plateaued and did not change much.

4.5.3.1 Labels Typically, to boost faster training and fix mode collapse, additional
information can be incorporated in both G and D using cGAN [129]. We used the
conditional version of WGAN-GP where class labels were added to the minority cases.
To accomplish this, clustering was done on the minority cases in order to induce class
labels on the training data.

We explored a number of common mechanisms considering k-means, Agglomera-
tive Hierarchical Clustering (AHC) [185], Hierarchical DBSCAN [50] and t-distributed
Stochastic Neighborhood Embedding (t-SNE) [122]. The details of these algorithms are
beyond the scope of this work. Due to its wide use and simplicity, we adopted k-means
clustering with 2 clusters for each data set. This yielded labels that could be fed into G
and D to induce generated samples. We call the final model WCGAN-GP after incor-
porating these class labels into the training.

4.5.4 Training WGAN-GP
Figure 11 presents the experiments of training WCGAN with GP. For comparative pur-
poses, using similar parameters, we show the quality of samples generated for WC-
GAN4 with GP, WGAN, cGAN and non-saturating GAN on the credit card fraud data.
We consider this for two combinations of the features for illustrative purposes up to
5000 epochs.

Figure 11: Comparison of GAN experiments ran on fraud data cases

The results show the superiority of samples generated by WCGAN with GP. There
is a clear mode collapse problem on the vanilla GAN and cGAN. WGAN and WCGAN
with GP show better samples. There is also clear damped oscillations and unstable

4The version of the WCGAN was incorporated with an improved WGAN training using the GP term as
per the paper by Gulrajani et al. [72].
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Figure 12: Difference between generated and real data critic loss

losses for GAN and cGAN where Wasserstein GANs exhibit stable training and losses,
especially after 1000 iterations where it seems to settle and stabilise. Figure 12 shows
the critic loss for each epoch, where after 1000 epochs, the loss starts to plateau. Thus
we decided to stop the training after 5000 epochs. We repeated this experiment for
each data set and adopted WCGAN with GP after 5, 000 epochs as the model to use for
synthetic sample generation.

4.5.5 Generating Synthetic samples
Once the WCGAN with GP is trained to 5000 steps, the learned generator distribution
is used to create more synthetic samples by feeding it the number of samples to output.

4.6 Logistic Regression
For simplicity and given the wide use with actuaries, a Logistic Regression (LR) [128]
model is trained using Python 3.7 [54] on both the imbalanced training data and over-
sampled data sets to predict the likelihood of each minority case using this equation:

log

(
hθ(x

(d))

1− hθ(x(d))

)
= θ0 +

d∑
i=1

θiXi, 0 < hθ(x
(d)) < 1 (16)

where hθ(x(d)) is the probability of the given minority case, θi’s are the estimated coef-
ficients using SGD, Xi is the feature vector for sample i and d is the number of features
to include in the LR model. The coefficients are estimated by minimising a loss function
through SGD in Equation 1. Typically, classification is such that when hθ(x(d)) ≥ 50%
for each instance, assign the minority case, otherwise the majority case.

4.7 Evaluation
The confusion matrix returns a report showing how predicted classes on unseen test
data using the LR model compare to actual observed classes, as depicted in Table 6.

Confusion Matrix Predicted: Minority Predicted: Majority
Actual: Minority True Positive (TP) False Negative (FN)
Actual: Majority False Positive (FP) True Negative (TN)

Table 6: The confusion matrix

TN is the number of majority cases that were correctly classified as such. FP is the
number of majority cases that were incorrectly classified as minority. TP is the number
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of minority cases that were correctly classified as minority. FN is the number of mi-
nority cases that were incorrectly classified as majority. Using these definitions, Table 7
presents the most well known evaluation metrics for binary problems.

Metric Formula

Accuracy
(

TP+TN
TP+TN+FP+FN

)
Precision

(
TP

TP+FP

)
Recall

(
TP

TP+FN

)
F1-Score 2 ∗

(
Precision∗Recall
Precision+Recall

)
Table 7: Evaluation metrics for binary problems

Precision is the ability of the LR model not to label a minority case that is actually
majority. Recall is the ability of the LR model to find all minority cases. F1-Score is a
harmonic mean between Precision and Recall [75]. F1-Score puts equal weight to both
Precision and Recall. Accuracy can be misleading and inappropriate when there are
imbalanced classes and thus may be biased towards majority cases [26, 61, 75]. Thus
we do not use rely on it in this work. Accuracy, Precision, Recall and F1-Score should
be close to 100% for a LR model to do well on the testing data. However, these scores
are influenced by what threshold is used to decide between the two binary classes.

The Receiver Operating Characteristic (ROC) curve [19, 74] measures a classifier’s
performance on a test set over different decision thresholds by varying the Precision
and the FP rate. The Area under the Curve (AUC) measures the performance of the
LR model trained on both imbalanced and over-sampled data sets and tested on un-
seen data with values close to 100% considered excellent performance [11, 74]. We also
compute the Precision-Recall curve and compute the Area Under the Precision-Recall
Curve (AUPRC) to get a weighted score. A method that gives the highest score is better.

4.8 Statistical Hypothesis Testing

Friedman test [58] followed by a post-hoc Nemenyi test [138] are performed to verify
the statistical significant differences between WCGAN-GP and SMOTE.

4.8.1 Friedman test
The Friedman test is a non-parametric ranking test to determine whether SMOTE and
WCGAN-GP methods perform similarly in mean performance rankings based on the
measures above, when normality does not hold [58].

4.8.2 Post-hoc Nemenyi test
If the null hypothesis is rejected, a post-hoc test can be applied where WCGAN-GP
is considered as the control method. The post-hoc Nemenyi test evaluates pairwise
comparisons between the over-sampling methods if the Friedman test suggests that
there is a difference in performance [138, 149]. We adopt WCGAN-GP as the control
method.

4.8.3 Implementation
Both tests are conducted using the Pairwise Multiple Comparison Ranks Package (PM-
CMR) [149] available in R. We assume statistical significance of the alternative hypoth-
esis at p-values < 0.05. In other words, we fail to reject the null hypothesis when the
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resulting p-value is higher than 0.05, suggesting that there is no difference between
SMOTE and WCGAN-GP.

5 Results and Discussion

This section presents the results of all the LR models applied on the baseline and over-
sampled data sets, with metrics on Precision, Recall, F1-Score, AUC and AUPRC com-
puted on the same unseen test data.

5.1 Comparisons

Table 8 presents the evaluation metrics (based on the testing set) of the LR model ap-
plied on the baseline and over-sampled data sets for a default threshold of 50%. Bold
shows an algorithm that performs the best for that data set i.e. a higher score for that
metric. Figure 13 shows the average performance across all data sets from each evalu-
ation metric.

Figure 13: Average performance across all data sets

In general, SMOTE improves Recall at the expense of a lower Precision. This re-
sults in a lower F1-Score than Baseline results. As a result of a much lower Precision for
SMOTE, AUPRC is penalised and lower than both Baseline and WCGAN-GP. SMOTE
compromises the Precision significantly, whereas WCGAN-GP improves Recall while
not significantly penalising Precision.

Overall, WCGAN-GP shows a higher F1-Score. Thus using a default threshold,
WCGAN-GP performs the best on F1-Score, followed by Baseline and SMOTE being
last (on the average). The lower Precision on SMOTE may be due to the strict assumed
probability distributions and possible creation of over-lapping and noisy samples [13,
38, 62, 127, 199]. While the univariate results on Precision, Recall and F1-Score are
useful, they do not give the entire picture over different thresholds [11].

Since AUC and AUPRC are based on varied thresholds, these metrics are typically
preferred over one dimension measurements such as Precision, Recall and F1-Score [11,
61, 119]. Since we are also comparing the above results with the Baseline model, these
metrics are impacted by class imbalance [75]. Thus we rely on the AUC and AUPRC.
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Method Precision Recall F1-Score AUPRC AUC
Credit Card Fraud
Baseline 85.71% 63.41% 72.90% 74.60% 81.70%
SMOTE 5.70% 90.24% 10.71% 47.98% 93.83%
WCGAN-GP 86.24% 76.42% 81.03% 81.35% 88.20%
Pima Indians Diabetes
Baseline 74.47% 56.45% 64.22% 72.49% 73.61%
SMOTE 62.86% 70.97% 66.67% 71.6% 75.48%
WCGAN-GP 75.51% 59.68% 66.67% 74.10% 75.22%
German Credit Scoring
Baseline 60.31% 51.34% 55.47% 63.02% 68.57%
SMOTE 54.22% 60.80% 57.32% 63.31% 69.61%
WCGAN-GP 46.51% 81.08% 59.11% 66.60% 70.94%
Glass Identification
Baseline 50.00% 42.86% 46.15% 53.83% 63.93%
SMOTE 42.86% 85.71% 57.14% 66.14% 72.86%
WCGAN-GP 55.00% 78.57% 64.71% 69.56% 78.03%
Breast Cancer Wisconsin
Baseline 94.34% 94.34% 94.34% 95.39% 95.50%
SMOTE 94.44% 96.23% 95.33% 96.03% 96.45%
WCGAN-GP 96.23% 96.23% 96.23% 96.93% 97.00%

Table 8: Evaluation metrics based on a default threshold of 50%

5.1.1 AUC
The ROC curve represents the trade-off between Precision and the FP rate while the
AUC is the area under the ROC curve [11]. SMOTE reports higher AUC values than
the Baseline. In general, WCGAN-GP is better on 3 of the 5 data sets except on Credit
card fraud and Diabetes data sets. Overall, the average AUC value is not too differ-
ent between WCGAN-GP and SMOTE. This result conflicts the AUPRC scores where
WCGAN-GP shows a clear dominant superiority over SMOTE.

Whilst AUC may be useful, it does not consider Recall, which may be the most
important metric for minority cases. AUC may be affected by skewed data sets and the
data distribution [75]. ROC curves are appropriate when the data is balanced, whereas
Precision-Recall curves are appropriate for imbalanced data sets [11, 75]. AUC may
tend to provide an overly optimistic view than AUPRC [75].

In general, an algorithm that dominates in AUC may not necessarily dominate the
AUPRC space [75]. Saito and Rehmsmeier [163] suggest that the Precision-Recall curve
and AUPRC are more informative than the ROC curve and AUC. Since we are also
comparing with the Baseline which is imbalanced, ROC and AUC may be inappropri-
ate, thus AUPRC provides a sensible measure for all methods.

5.1.2 AUPRC
AUPRC has all the characteristics of the AUC and thus for the purposes of this work,
we rely more on AUPRC than AUC [75, 163]. Overall, WCGAN-GP shows better im-
provements over SMOTE. WCGAN-GP is highest on AUPRC, suggesting this algo-
rithm performs the best across many thresholds and all the data sets used. On the
average, SMOTE does not provide a superior predictive performance than the Base-
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line on all the metrics. Below we further provide conclusive evidence on the statistical
significance of the above results on the AUPRC.

5.2 Statistical Hypothesis Testing
Table 9 shows the results of the Friedman test applied on AUPRC to verify the statis-
tical significance of WCGAN-GP compared to SMOTE. There is enough evidence at
5% significance level to reject the null hypothesis on 3 of the data sets, except German
credit scoring and Glass identification, suggesting that over-sampling methods are not
performing similarly and are different.

Data set P-value Significance
Credit Card Fraud 2.9560e-23 Yes
Pima Indians Diabetes 0.188386 No
German Credit Scoring 1.0683e-11 Yes
Glass Identification 0.465622 No
Breast Cancer Wisconsin 4.0085e-12 Yes

Table 9: Results for Friedman’s test

Since the null hypothesis was rejected for 3 of the data sets, a post-hoc test was
applied to further determine pairwise comparisons using the Nemenyi test where
WCGAN-GP is the control method.

Test Credit Card Fraud German Credit Breast Cancer
WCGAN-GP vs. SMOTE 0.001000 0.003000 0.001000

Table 10: Results for the post-hoc test

The above results confirm the significant superiority of WCGAN-GP over SMOTE
as all the p-values are less than 0.05 for the 3 data sets where Friedman’s test suggested
a difference. These results confirm the findings shown in figure 13 and table 8 where
the average performance seen on both the AUC and AUPRC was lower for SMOTE
compared to WCGAN-GP. In general, WCGAN-GP provides statistically significant
better performance on 3 of the 5 data sets.

5.3 Discussion
Overall, SMOTE improves the AUC/AUPRC when applied on the imbalanced data set
but significantly penalises Precision, leading to a lower AUPRC on 2 of the data sets
used. SMOTE samples synthetic points along line segments joining minority instances
using the Euclidean distance. This approach may end up using majority instances and
thus creating noisy examples and over-lapping cases [73, 148]. SMOTE is not based on
the true distribution of the minority class data [38]. The poor performance of SMOTE
(especially on Precision on the Credit card fraud data set) may be attributed to these
effects. Overall, SMOTE alters the data distribution as was observed by the significant
compromise on Precision and generally lower F1-Score, AUPRC and AUC values.

Other SMOTE variants such as density-based approaches are meant to improve
the above SMOTE weaknesses [62, 199]. However, they make strict assumptions about
the structure and distribution of the minority class data. SMOTE was the quickest to
over-sample. WCGAN-GP requires a significant pre-training of both the critic and the
generator.
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GANs are well-known for their training and computing powers [35, 120]. Thus
they have expensive run-times. However, current GANs such as WGAN and WGAN-
GP remedy this impact with stable training. The quality of generated samples may be
worth it compared to the training times. In this study, the GANs reached stable training
even for small samples such as credit card fraud cases. This means that GANs may still
be used even for smaller data sets with enough training capacity.

Using WCGAN-GP to over-sample minority cases provided the best performance
on the AUPRC and on 3 of the data used on AUC. GANs do not make explicit assump-
tions about the probability distribution of the minority class data. This idea has been
used to create new samples for images, music, arts and videos [63, 184, 195]. There is a
significant potential to create new samples using GANs and augment limited actuarial
data sets. Recent work on this [45, 53] report GAN superior performances over SMOTE
and other variants. While GANs are notoriously difficult to train and optimise, in this
study, using a simple architecture provided stable significant results after 5000 epochs.

Given the current surge in interest for GANs, optimising and training GANs is be-
coming straightforward as there are many implementations in Keras [55], Pytorch and
Tensorflow [178]. Thus running times for GANs might not necessarily be an issue, en-
abling GANs to provide a superior over-sampling approach to supplement imbalanced
data sets.

Given the superiority of GANs over other generative models and their wide ap-
plications, the scope for actuarial use is extensive. The most obvious use is data aug-
mentation and boosting predictive models as demonstrated in the experiments con-
ducted. Other applications include anomaly detection, discriminative modelling, semi-
supervised learning, domain adaptation, attention prediction, data manipulation, miss-
ing data imputation, time series generation and privacy preservation. There are many
available GANs for use in each of the above domains. The most interesting use case
is semi-supervised learning as it can do both data augmentation and also acting as a
classifier. Research for GANs grows each year and actuaries may need to add GANs to
their toolkit as this will significantly improve their models and aid on decision-making.

6 Conclusion and Future Research

This section concludes this work and provides scope for future research.

6.1 Conclusions

Gaining an advantage in competitive markets through offerings of suitable tailored
products on customers relies on building and maintaining adequate predictive mod-
els. To build these models, a substantial amount of data and a sizeable number of
records is desirable. However, when expanding to new or unexplored markets, that
level of information is rarely always available. As a result, actuarial firms have to buy
data from a local provider, through purchasing reinsurance from a re-insurer, through
limited unsuitable industry and public research or rely from extrapolations from other
better known markets. In this work, we show how an implicit model using GANs can
alleviate this problem through the generation of adequate quality data even from very
limited small samples, from difficult domains or without alignment.

This example is a classic data augmentation application of GANs where we
showed their superiority of SMOTE and improving the original results. SMOTE im-
proved the classification performance. However, SMOTE is not based on the true un-
derlying minority class distribution. SMOTE density estimation approaches remedy
this issue, however, they are also not based on the true data distribution as they make
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strong data assumptions.
Using WCGAN-GP, it is possible to create synthetic cases implicitly and this turned

out to offer a significantly better improvement over SMOTE. This work comprehen-
sively reviews GAN theory and applications in a number of domains, with possible
adoption for actuarial use. GANs are highly successful for data augmentation, dis-
criminative modelling, semi-supervised learning, privacy preservation, domain adap-
tation, attention prediction, anomaly detection, imputation and time series generation.
We believe that these applications have scope for actuarial science and actuaries can
add them to their toolkit to add predictive models.

6.2 Limitations

This work focused on using example continuous data. Other data sets have mixed
data types such as count, ordinal and categorical features. This work also considered
binary cases whereas other data sets may have multiple classes. The analysis can be
repeated for other actuarial data sets such as mortality, claims frequency and amounts
etc. We repeated training and testing of each over-sampling method 30 times to min-
imise stochastic effects - this sample size can be increased for more robustness. Alterna-
tively a bootstrapping approach can be applied to better understand the distributional
attributes of the model errors.

We were also limited to provide adequate practical examples for each GAN ap-
plication domain. Our future work includes comparing current traditional actuarial
approaches such as stochastic simulations and pricing models versus each GAN ap-
proach in each domain, extensively.

Because GANs have become so popular, their limitations have been improved
tremendously. However, there are still open challenges for GANs. GANs rely on the
generated examples being completely differentiable with respect to the generative pa-
rameters. As a result, GANs cannot product discrete data directly, such as one-hot
word. Thus, solving this problem would unlock the significant application of GANs in
NLP, albeit there have been some sequence success on text generations [156, 157].

Although GANs are useful for sample generation, there is not a useful metric that
can be used to measure the uncertainty of the well-trained generator. This is another
interesting future direction. Another key challenge is the evaluation of GANs after
training even though there are measures to compute the quality of results generated.

There are many GAN variants and we point the reader to comprehensive papers
by Creswell et al. [35], Gui et al. [70], Hitawala [81], Hong et al. [85] and Wang et al.
[188]. Goodfellow [67] provides a thorough theoretical GAN formulation, including
key issues and some new directions.

6.3 Future Research

Below are possible future research to improve this work:
• Consideration on other data sets to apply the same techniques, especially complex

data sets that include small disjuncts, over-lapping, mixed data types and multiple
classes.

• Alternative consideration for other ML algorithms such as ANN, Support Vector
Machines [25], Random Forests [21] and Gradient Boosting Machines [20, 27]. Such
a comprehensive study would show which ML technique is best and for which
data set and domain.

• Empirical comparison of these results with other tabular data sets where GAN was
applied.

International Actuarial Colloquium France, Paris 11-14 May 2020 37



K.S. Ngwenduna and R. Mbuvha

• New Adam variants were recently proposed called Rectified Adam (RAdam) [116],
AMSGrad [155] and LookAhead or Ranger [203], which seem to show better re-
sults. However, if remains to be seen whether these optimisers will consistently
surpass Adam and others. These optimisers could further improve GAN training
and stability.

In our opinion, the future of GANs will be characterised by open acceptance of GANs
and their applications by the research community and being used in commercial
applications. Given their impressive results and advancement in deep learning
techniques, we expect a wider extensive use of GANs. The training instability of GANs
will soon be done without any problems as the maturity of the training improves with
new techniques being invented at a rapid speed. There are many potential future
applications of GANs, with significant potential for actuarial use and improving
existing models and being applied in other areas by actuaries. Given the surge in
marketing and social promotions, info-graphics are the main ingredient of social media
marketing. Artificial intelligence and GANs can help marketers and designers in the
creative process.

“. . . GANs and their variants..the most interesting idea in the last 10 years in machine learn-
ing...”

Facebook’s AI research director, Yann LeCun
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