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Abstract. A simple formula for non-discriminatory insurance pricing is in-

troduced. This formula is based on the assumption that certain individual
(discriminatory) policyholder information is not allowed to be used for insur-

ance pricing. The suggested procedure can be summarized as follows: First, we

construct a price that is based on all available information, including discrim-
inatory information. Thereafter, we average out the effect of discriminatory

information. This averaging out is done such that discriminatory informa-

tion can also not be inferred from the remaining non-discriminatory one, thus,
neither allowing for direct nor for indirect discrimination.
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1. Introduction

The basic question is as follows: given observed claims of insurance policies
for which we have access to individual policyholder characteristics (e.g. gender),
how can we construct an insurance tariff for which we can assure that it does not
discriminate, say, w.r.t. gender? This is a highly relevant question, for instance, the
current EU legislation requires gender neutral pricing, see [9]. This question has
become even more relevant due to big data and recent developments in complex
algorithmic models because such algorithms may be able to unfold, e.g., the gender
from other detailed individual policyholder characteristics. For a broader overview
on anti-discrimination laws we refer to Avraham et al. [2].

We aim at developing pricing formulas that shall be devoid of discrimination,
while the insurer is still able to differentiate between policyholders with respect
to non-discriminatory features. We assume that an insurer has access to policy-
holder data that can be split into discriminatory (e.g. gender, ethnicity) and non-
discriminatory features (e.g. age, smoking habits). For the purposes of this paper
we distinguish between direct and indirect discrimination by saying that:1

• A pricing model avoids direct discrimination, if none of the discriminatory
features is used as a rating factor.
• A pricing model avoids indirect discrimination, if it avoids direct discrimi-

nation and, furthermore, the non-discriminatory features are used in a way
that does not allow implicit inference of discriminatory features from them.

Date: Version of January 16, 2020.
1We note that the regulatory text [9] provides definitions of direct and indirect discrimination,

which to an extent motivate our technical arguments. However, our definitions are drawn from
an actuarial thinking and we do not make any claim about their correspondence to the legal

definitions of those terms.
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In this paper we make two key points. First, we demonstrate that avoiding direct
discrimination does not necessarily entail avoiding indirect discrimination. Conse-
quently, just ignoring discriminatory features in the calculation of insurance prices
does not necessarily yield discrimination-free prices. Hence, “unawareness” of dis-
criminatory features is not a solution to our problem. Second, we propose a simple
pricing formula that avoids both direct and indirect discrimination. While the
formula only uses non-discriminatory features as rating factors, it introduces an
adjustment, which requires knowledge of policyholders’ discriminatory features.

These concepts are illustrated in the following simple example, a more sophisti-
cated version of which is given in Section 6.

Example 1. Assume that you have observed a health insurance product and ob-
tained the following claim counts (ni,j)i,j=0,1 and claim exposures (ri,j)i,j=0,1:

ni,j woman man row total

smoker 32 4 36

non-smoker 28 48 76

column total 60 52 112

ri,j woman man row total

smoker 133 24 157

non-smoker 131 301 432

column total 264 325 589

where i = 1 corresponds to “smoker” and j = 1 corresponds to “woman”. Based
on the above contingency tables we may estimate the claim frequencies λi,j by

the empirical frequency λ̂i,j = ni,j/ri,j . Assume now that gender is considered a
discriminatory characteristic. Thus, in order to avoid direct discrimination, its
explicit influence on the calculated insurance price needs to be removed. The
standard way of doing this is to consider the aggregated estimators (row sums)

λ̂i,• = ni,•/ri,• = (ni,0 + ni,1)/(ri,0 + ri,1). This approach produces, e.g. for smok-
ers,

λ̂1,• =
36

157
= 0.229.

The estimate λ̂1,• (and a premium for smokers based on it), thus, can be produced
by completely ignoring policyholders’ gender information. But one can note that

an alternative representation of λ̂1,• is

(1) λ̂1,• = λ̂1,1P̂(woman | smoker) + λ̂1,0P̂(man | smoker),

where P̂ refers to the empirical distribution obtained from the data. Hence, the

estimate λ̂1,• not only contains information about the influence of smoking on

producing a claim, but also, via P̂(gender | smoking habits), about the propensity
of smokers to be female or male. In our case, because smoking habits substantially
differ between genders (a smoker is a woman with probability 133/157 = 85%,
whereas a non-smoker is a woman with probability 131/432 = 30%), it is indeed
the case that the above approach implicitly infers the likely gender from smoking
habits. Therefore, indirect discrimination is present. �

Literature review. Although an issue of key relevance for actuarial pricing,
relatively little attention has been paid to the issue of discrimination-free pricing
within the actuarial literature. In a discussion of the implications of the EU gender
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legislation, it is suggested in Guillén [12] that covariates highly correlated with
gender can be used as proxies by insurance companies, which from our perspective
results in indirect discrimination. Focusing on the case of mortality pricing, Chen
and Vigna [5] criticize the industry practice of deriving a unisex life table by mixing
the life tables for each gender on the grounds that this does not respect the principles
of actuarial fairness, which is to say that the total unisex premiums charged for the
portfolio are not equal to the total premiums charged using gender specific life
tables. They provide alternative approaches without this shortcoming; note that
the discrimination-free price in Section 2 will reproduce the pricing formulas of Chen
and Vigna [5]. The implications of unisex pricing on insurer capital requirements
in the context of Solvency II are examined in Chen et al. [4], and an ALM approach
to unisex pricing is taken in Burszas et al. [3], where also the concept of “gender
mix risk” is discussed. Market implications of unisex tariffs are discussed in Sass
and Seifried [19], see also De Jong and Ferris [7] for a discussion of adverse selection
stemming from restrictions on risk classification.

The issue of indirect discrimination occurring when using the above mentioned
“unawareness” approach, see also Definition 2 below, has been discussed in Pope
and Sydnor [18] and Kusner et al. [15]. The procedure for discrimination-free pricing
provided in Pope and Sydnor [18] is the same as our proposal in Section 2, below,
but they do not provide a probabilistic justification for the procedure. Moreover,
in Pope and Sydnor [18] the (critical) issue of a potential bias at the portfolio level
and corrections for this are not addressed. In Aseervatham et al. [1], the method
of Pope and Sydnor [18] is applied in the context of auto insurance pricing, but
similarly, the issue of a bias at the portfolio level is not considered.

Relatively few examples of causal inference applied within an insurance context
are known to the authors. At the renewal of insurance policies, some insurers seek
to estimate policyholder demand elasticity by randomly varying renewal prices for a
subset of policyholders (i.e. a form of a randomized controlled trial is conducted) and
estimating the impact on the probability of renewal. Once the demand elasticities
have been estimated, a profit maximizing pricing policy can be established in a
practice referred to as price optimization, see e.g. Krikler et al. [13]. Also within this
context, Guelman and Guillén [11] apply methods from causal inference to estimate
demand elasticity functions from observational data collected by an insurer.

Statement of contribution. This paper makes several contributions. Firstly,
we formally define direct and indirect discrimination, a rigorous probabilistic ac-
count of discrimination-free prices is given and the existence of these prices is ex-
amined. Secondly, we justify the discrimination-free pricing formula of Section 2
using the tools of causal inference. Thirdly, the bias correction methodologies of
Section 4 are a novel contribution to the literature. Finally, the discrimination-free
pricing procedure is illustrated using a machine learning algorithm in Section 6.

Organization of the paper. In Section 2 we discuss different insurance prices
which comprises the best-estimate price considering all available information, the
unawareness price which avoids direct discrimination, and the discrimination-free
price which avoids direct and indirect discrimination. Moreover, in Subsection 2.3
we give a mathematical definition of indirect discrimination which is based on a
change of probability measure. Special versions of discrimination-free prices can
nicely be interpreted in terms of causal inference, which describes how to adjust
for confounding covariates; this is discussed in Section 3. Best-estimate prices (in
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terms of conditional expectations) naturally lead to an unbiased pricing system on a
portfolio level. Discrimination-free pricing does not necessarily have this property.
This deficiency is going to be analyzed in Section 4. In Section 5 we describe the
implementation of the procedure for calculating discrimination-free prices. This is
verified in more detail in Section 6 based on a longer numerical illustration. The
paper ends with a number of concluding remarks in Section 7.

2. Discrimination-free pricing

2.1. Definition of discrimination-free prices. We denote by (Ω,F ,P) the un-
derlying probability space with physical probability measure P. For a given port-
folio of insurance policies, let D denote the vector of discriminatory covariates
(characteristics, features, explanatory variables) of policyholders, and let X de-
note the vector of non-discriminatory covariates. We assume that X and D are
random vectors on (Ω,F ,P); the randomness of these covariate vectors represents
variations between policyholders within a given portfolio. An individual policy-
holder is obtained by conditioning on X = x, D = d (which can be interpreted
as choosing an insurance policy at random from the portfolio). For simplicity, we
will denote the marginal and conditional distributions of covariates under P by
X ∼ P(x), D ∼ P(d) and (D | X = x) ∼ P(d | x), respectively.

A policyholder claim is denoted by the random variable Y . The claim Y typically
depends on (but is not fully determined by) both the discriminatory covariates D
and the non-discriminatory ones X. Our aim is to price such a claim Y , with the
resulting price being free from direct as well as indirect discrimination, according
to the arguments of Section 1. A technical definition of these concepts will be given
in Section 2.3, below.

In the sequel, it will be useful to assume Y,X,D ∈ L2(Ω,F ,P). This assumption
is not crucial for defining discrimination-free prices, but will allow us to give more
intuitive interpretations in terms of orthogonal projections and minimal distances.
Our notion of price will be based on conditional expectations of Y , when condi-
tioning on different subsets of covariates. We first introduce a number of different
prices that are important for the subsequent discussions and derivations.

Definition 2 (best-estimate price). The best-estimate price for Y w.r.t. (X,D) is
defined by

µ(X,D) := E[Y | X,D].

Remark 3.

(a) We call the price µ(X,D) “best-estimate” because it minimizes the L2-distance
of all (X,D)-measurable prices to Y , i.e. µ(X,D) is the orthogonal projection
of Y onto the sub-space generated by (X,D).

(b) In general, the best-estimate price is not discrimination-free, unless we are in
the special case of µ(X,D) = µ(X).

(c) The best-estimate price is unbiased w.r.t. Y , that is,

µ := E[Y ] = E [µ(X,D)] ;

by the tower property for conditional expectations. Unbiasedness is important
because it indicates that best-estimate prices achieve on average the correct
price level for the portfolio.
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As already discussed in Example 1, an initial attempt at achieving a discrimination-
free price arises through simply ignoring discriminatory covariates D.

Definition 4 (unawareness price). The unawareness price for Y w.r.t. X is defined
by

(2) µ(X) := E[Y | X].

Remark 5.

(a) As the price µ(X) does not depend explicitly on D, it avoids direct discrimina-
tion. However, in general, the unawareness price will produce indirect discrim-
ination, as was discussed in Example 1; see also Kusner et al. [15]. Specifically,
we can write the unawareness price as

(3) µ(X) =

∫
d

µ(X,d) dP(d | X).

Indirect discrimination arises because the conditional probability dP(d | X)
enables inference of discriminatory covariates D from non-discriminatory ones
X. Such discrimination is avoided in the special case when D and X are
independent, since then it holds that dP(d | X) = dP(d).

(b) The price µ(X) minimizes the L2-distance to Y based solely on X, i.e. it is the
best price w.r.t. information X. At the same time, the price µ(X) also mini-
mizes the L2-distance to µ(X,D), by a simple application of the Pythagorean
theorem. Note that

||µ(X)− µ(X,D)||22 = E[Var(µ(X,D) | X)],

which intuitively should decrease with increasing dependence between X and
D. Hence, the quality in the approximation of µ(X,D) using µ(X) should be
good if X essentially is a function of D, i.e., if the non-discriminatory covariates
X allow us to almost perfectly infer the discriminatory covariates D.

(c) The unawareness price is unbiased, since

µ = E[Y ] = E [µ(X)] .

We now propose a price that is free of both direct and indirect discrimination.

Definition 6 (discrimination-free price). A discrimination-free price for Y w.r.t.
X is defined by

h∗(X) :=

∫
d

µ(X,d) dP∗(d),(4)

where the distribution P∗(d) is defined on the same range as the marginal distribu-
tion of discriminatory factors D ∼ P(d).

Remark 7.

(a) The discrimination-free price (4) is obtained by averaging best-estimate prices
over discriminatory covariates, using a (potentially arbitrary) marginal distri-
bution P∗(d), where it is the imposed marginalization w.r.t. D which is the
crucial step (e.g. nothing prevents us from using P∗(D) = P(D)). Given that
the price h∗(X) does not explicitly depend on D, it is obviously free from di-
rect discrimination. We argue that the averaging construction proposed in (4)
also removes indirect discrimination. First, note that while (4) appears similar
to (3), there is a key difference: discrimination-free prices do not in any way
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depend on the conditional distribution P(d | X) – hence they do not enable to
infer the discriminatory covariates from the non-discriminatory ones. This will
be further discussed in Section 2.3 and verified in the case study of Section 6. In
the special case of X and D being independent, it follows that h∗(X) = µ(X).

(b) Definition 6 is designed to remove the possible explanatory power that X may
have for D; it does not assume independence between X and D in the given
portfolio. This point will be made more precise in Section 2.3, and in Sec-
tion 2.4 we discuss existence of discrimination-free prices as well as alternative
interpretations of h∗(X).

(c) Definition 6 can also be motivated by arguments from causal inference. Specif-
ically, formulas like (4) are used to quantify the direct causal effect of X on Y.
Our distribution-free price corresponds to the (expected value version) of the so-
called “back-door” adjustment formula in causal inference settings, when seeing
D as a potential confounder of X; these ideas will be discussed in more detail in
Section 3. Furthermore, formula (4) using the choice P∗(d) = P(d) corresponds
precisely to the Partial Dependence Plot (PDP) introduced by Friedman [10],
see also Zhao and Hastie [20]; in particular, our estimated model approach in
Section 5 will correspond to formula (53) in Friedman [10].

(d) Prices obtained using (4) will in general not be unbiased, since

(5) µ = E[Y ] 6= E[h∗(X)] =

∫
x,d

µ(x,d) dP∗(d)dP(x),

even for the special choice P∗(d) = P(d). For that reason, the need emerges
for portfolio level price corrections, which will be discussed in Section 4.

(e) Note that, given the potential arbitrariness of P∗, evaluation of discrimination-
free prices only requires knowledge of the mapping (x,d) 7→ µ(x,d), where
µ(x,d) may be an (algorithmically derived implicit) regression function. Nev-
ertheless, as pointed out in the previous remark, if one aims to correct a poten-
tial bias of h∗(X), it is necessary to consider (estimate under) the “real-world”
probability measure P.

2.2. Choice of weighting distributions for discriminatory covariates. From
Definition 6 it is clear that the distribution P∗(d) can be chosen rather freely. A
simple choice is to set P∗(d) = P(d), that is, average in (4) w.r.t. the marginal
distribution of the discriminatory characteristics in the portfolio. This choice is
supported by causal inference (CI) arguments in the settings of Section 3, below.
Therefore, we introduce the special notation for this choice

h(CI)(X) :=

∫
d

µ(X,d) dP(d).(6)

We illustrate how h(CI)(X) is evaluated in the context of Example 1.

Example 8. Recall that in Example 1 we argued that aggregated estimators (row

sums) λ̂i,• are discriminatory because gender may be inferred from smoking habits.

The price h(CI)(X) proposes to remove this effect by replacing the conditional prob-
ability P(gender | smoking habits) with P(gender). This implies that the frequency
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estimate for smokers, λ̂1,•, should be replaced by

λ̂
(CI)
1,• = λ̂1,1P̂(woman) + λ̂1,0P̂(man)

=
32

133
· 264

589
+

4

24
· 325

589

= 0.200 < 0.229 = λ̂1,•.

�

Furthermore, it is useful to consider the extrema of discrimination-free prices.
Consider the following distribution-free prices

h(+)(X) := sup
P∗

∫
d

µ(X,d) dP∗(d),

h(−)(X) := inf
P∗

∫
d

µ(X,d) dP∗(d).

h(+)(X) and h(−)(X) correspond to the essential supremum and infimum over d in
the range of D, respectively. Thus, for non-discriminatory covariates X = x, this
immediately gives us

h(−)(x) ≤ h∗(x), h(CI)(x), µ(x) ≤ h(+)(x).

Moreover, for the bias property we get the following relationship∫
x

h(−)(x) dP(x) ≤ E[h∗(X)], µ ≤
∫
x

h(+)(x) dP(x).

By definition h(+)(x) corresponds to the “worst” (or most “prudent”) price, and
has been discussed in the context of unisex pricing in Chen and Vigna [5].

Finally, recall that the distribution-free price (4) in general is biased. An alter-
native possibility for the choice of P∗(d) is to additionally require unbiasedness in
(5). In the simple case of a binary discriminatory covariate like gender in Example
8, this reduces to choosing P∗(woman) such that we obtain an identity in (5). A
more general construction of unbiased prices via choices of P∗(d) is presented in
Section 4, below.

A special case corresponds to an additive best-estimate price, in the sense that
µ(X,D) = µ1(X) + µ2(D). Then, the simple choice P∗(d) = P(d) is appealing, as
it provides an unbiased price. Note that

h(CI)(X) =

∫
d

µ1(X) dP(d) +

∫
d

µ2(d) dP(d) = µ1(X) + E[µ2(D)],

which implies

E[h(CI)(X)] = E[µ1(X)] + E[µ2(D)] = E[µ(X,D)] = µ.

2.3. Revisiting direct and indirect discrimination. In this section, following
the development of our ideas so far, we provide more technical definitions of prices
that avoid direct and indirect discrimination.2

Choose an arbitrary probability measure P∗ on the measurable space (Ω,F) such
that Y ∈ L1(Ω,F ,P∗). Choose a (sub-)vector Z of the covariates (X,D) and define
the (P∗,Z)-conditional-expectation price by

µ∗(Z) := E∗[Y | Z],

2(Fast) readers not familiar with changes of probability measures may skip this section.
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where E∗ denotes the expectation under P∗.

Definition 9. A price avoids direct discrimination, if it can be written as

µ∗(Z) = E∗[Y | Z],

where Z is σ(X)-measurable, and where the expectation is taken w.r.t. a probability
measure P∗ on (Ω,F) such that Y ∈ L1(Ω,F ,P∗).

Remark 10.

(a) Definition 9 says that a price avoids direct discrimination if it can be written
as a measurable function of the non-discriminatory covariates X. For Z =
X we receive maximal use of non-discriminatory information (relative to P∗),
therefore, we typically work with Z = X.

(b) The choice P∗ = P (and Z = X) provides the unawareness price µ(X) of
Definition 4 which, thus, avoids direct discrimination.

(c) Importantly, under the choice P∗ = P, the unawareness price µ(X) can be
calculated without explicit knowledge of µ(X,D) – hence it does not require
collection of discriminatory policyholder information. This also applies if we
need to estimate µ(X) from data, see (17) below.

(d) Note that by using standard Radon-Nikodym arguments (assuming existence
of relevant quantities), Definition 9 can be re-written according to

µ∗(Z) = E[Y ∗ | Z],

where Y ∗ = Y dP∗(Y | Z)/dP(Y | Z). That is, the use of P∗ will in general
correspond to using another actuarial pricing principle than the fair (pure risk
premium) pricing principle under P. Another observation, which is a direct
consequence of the above, relating to a potential bias, is that

E[µ∗(Z)] = E[E[Y ∗ | Z]] = E[Y ∗].

These ideas will not be pursued further other than that we will give an example
when P∗ is chosen such that E[Y ] = E[Y ∗], where it is possible to interpret Y ∗

in terms of a certain type of risk-adjustment, see Section 4.

Now, indirect discrimination can be defined.

Definition 11. A price µ∗(Z) that avoids direct discrimination is said to avoid
indirect discrimination if Z and D are independent under P∗.

Independence under P∗ effects the decoupling of discriminatory covariates from
non-discriminatory ones, for specific policyholders. Thus, according to Definition
11, a price that avoids indirect discrimination satisfies

(7) µ∗(Z) =

∫
d

µ∗(Z,d) dP∗(d | Z) =

∫
d

µ∗(Z,d) dP∗(d),

where µ∗(Z,d) = E∗[Y | Z,D = d].

Remark 12.

(a) It is important to note that the independence in Definition 11 is an artifice
of the introduced probability measure P∗ under which insurance is priced and
does not generally reflect the actual observed dependence between X and D.
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(b) For Z = X, the calculation that avoids indirect discrimination is based on the
knowledge of µ∗(X,D), see (7) – hence it requires collection of discriminatory
policyholder information. In fact, one of the most critical problems in practice
is that discriminatory information is often incomplete, e.g. about ethnicity,
which typically results in indirect discrimination.

(c) In statistical applications we usually use the conditional probability measure
P(y | X,D) to model the claim Y , given the covariates (X,D). The reason for
this choice is that Y , given (X,D), is observed under the real world measure P,
which allows for direct estimation of the regression function, see also Section 5
below,

(x,d) 7→ µ(x,d).

We could even insist on the measure choice P(y | X,D) for the claim Y , given
(X,D), because it implies that we maintain the (causal) structure of how the
covariates impact the response. This then motivates the choice

P∗(y,x,d) = P(y | X = x,D = d) P∗(x) P∗(d),

for Z = X in Definition 11, which in view of (7) results in the discrimination-
free price

µ∗(X) =

∫
d

µ(X,d) dP∗(d | X) =

∫
d

µ(X,d) dP∗(d) = h∗(X).

Thus, the discrimination-free price of Definition 6 does neither allow for direct
nor for indirect discrimination.

(d) Linking to Remark 7(e), we need to know the real world measure P in order
to study unbiasedness w.r.t. µ = E[Y ]. Moreover, the actual portfolio that we
hold is described by Z ∼ P(z) which motivates the choice P∗(z) = P(z) for
studying unbiasedness. Thus, unbiasedness under Definition 11 holds if

µ = E[µ∗(Z)] =

∫
d,z

µ∗(z,d) dP∗(d) dP(z).

We come back to this in Section 4.

2.4. Existence of discrimination-free prices. We have not yet discussed ex-
istence of discrimination-free prices according to Definition 6 and the possibility
of avoiding indirect discrimination according to Definition 11. This is done in the
present section.

We emphasize that data (and the related statistical models) play a crucial role
in discrimination-free considerations:

• Indirect discrimination may be the result of incomplete discriminatory in-
formation, see Remark 12(b).
• Indirect discrimination may be the result of nonexistent or insufficient in-

formation of certain parts of the population.

In this section we discuss the second item which can enter in different ways. A
first one, which is probably less relevant in insurance, is that not all parts of the
population are equally represented in the development of the statistical model. For
instance, there is research in image recognition to discover malignant melanoma
(skin cancer). If this research is mainly based on images of people with light skin,
the corresponding model will likely fail to discover malignant melanoma for people
with dark skin. This is a form of discrimination resulting from insufficient data of
certain parts of the population.
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In the current section we rather discuss nonexistent data of certain parts of the
population. The meaning and implications of nonexistent data are going to be dis-
cussed in more detail. We start with an example. Assume that the discriminatory
covariates D correspond to gender and the non-discriminatory ones X to educa-
tion. Education could be in the ordinal form “secondary school degree”, “high
school degree” or “university degree”, but information about education could also
be received in the following categorical form “Catholic college degree”, “public col-
lege degree” or “girls college degree”. Per definition the last label “girls college
degree” contains as only gender “female”. This implies that

P(X = girls college degree,D = man) = 0,

thus, the event A = {X = girls college degree,D = man} ∈ F is a null set
w.r.t. P. In many cases, we do not model responses Y on null sets. Therefore,
neither Y on A may be specified in our model nor the conditional expectation
µ(girls college degree,man) = E[Y | A] may be determined. But this implies that
we cannot evaluate the discrimination-free price

h∗(X) =

∫
d

µ(X,d) dP∗(d),

if P∗(d) has positive probability mass on both genders. In the current situa-
tion, the problem may be solved by setting P∗(D = woman) = 1 which gives
the discrimination-free price h∗(X) = µ(X,woman).

If the education information X has an additional level “boys college degree”,
the above solution will not work because we have a second P-null set B = {X =
boys college degree,D = woman} ∈ F which makes it impossible to choose a dis-
tribution P∗(d) such that the discrimination-free price h∗(X) is well-defined.

The simple solution to this problem is to drop the education information, that
is, choose a smaller covariate set. This is equivalent to choosing a true subset Z
of X in Definition 11. In practice, we often try to inter- or extrapolate the model
assumptions for Y . This is reasonable if unavailable information corresponds to
ordinary variables (and responses have some continuity in these covariates). In cer-
tain cases it may also be justified for nominal variables by, for example, postulating
a multiplicative influence structure of covariates, say, women are x% better than
men regardless of the attended college. In our situation such an assumption can be
made, but it cannot be verified because of a missing control group.

Proposition 13. Assume there exists a product measure P∗(x)P∗(d) on (Ω,F)
which is absolutely continuous w.r.t. the probability measure P(x,d) of the covari-
ates (X,D). Then, there exists a price µ∗(X) that avoids indirect discrimination.

Proof. Absolute continuity implies that every P(x,d)-null set is also a P∗(x)P∗(d)-
null set. Therefore, µ(X,D) is well-defined on all sets where (X,D) has positive
P∗(x)P∗(d)-probability mass. Since the latter is a product measure we can calcu-
late the discrimination-free price h∗(X) by integrating µ(X,d) over dP∗(d | X) =
dP∗(d), see also (7). This completes the proof. �

3. Causal inference and discrimination

The purpose of this section is to justify the discrimination-free price of Definition
6 in a causal inference setting. We try to give these arguments in a pedagogical
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DISCRIMINATION-FREE INSURANCE PRICING 11

(though slightly informal) way. For a rigorous treatment we refer to Pearl [16] and
Pearl et al. [17, Ch. 3.1].

The starting point of causal inference is a hypothesis of a potential covariate
relationship which may be described in terms of a directed graph G. The directed
graph G consists of a set of nodes corresponding to the characteristics, including
the response Y , and directed edges – “arrows” – indicating directions of potential
influence between the characteristics (including the response Y ). This informal
definition can be made precise, but it is most easily understood by the example
given in Figure 1 (lhs).

D

X Y

D

X = x Y

Figure 1. (lhs) Causal diagram described by G; (rhs) causal di-
agram altered according to the do-operation do(X = x).

The directed graph G in Figure 1 (lhs) is an example of a directed acyclic graph
(DAG), where acyclic means that when following the direction of the edges, the
graph does not contain any loops. For a precise description, see Pearl et al. [17, Ch.
1.4]. The graphical representation given in Figure 1 (lhs) corresponds to a situation
where the discriminatory characteristics D may influence both directly on Y , but
also indirectly via X. Hence, Figure 1 (lhs) tells us that D is a confounder w.r.t.
the effect of X on Y .

Figure 1 (lhs) already captures a large number of realistic insurance pricing
situations. For instance, in view of Example 1, we may identify smoking habits by
X and the gender by the discriminatory factors D. Differences in smoking habits
between men and women can be expressed by a directed edge D → X. There are
intrinsic differences between men and women when it comes to health outcomes
(e.g. women cannot get prostate cancer), this is described by D → Y . Moreover,
smoking in itself may cause health problems X → Y . This situation is exactly
covered by the DAG G in Figure 1 (lhs).

We remark that the subsequent causality arguments also hold true for more gen-
eral causal diagrams, for instance, if we have additional (unmeasured) confounding
characteristics U that enter the causal diagram as illustrated in Figures 10-12,
given in the appendix. For pedagogical reasons, we restrict ourselves to the causal
diagram in Figure 1 (lhs).

Since the directed edges in the DAG G do not act fully deterministically, and
to make probabilistic statements, we need to endow the DAG G with a probability
measure P that describes the randomness involved. This probability measure P
should be Markovian on G which, colloquially speaking, means that all nodes have
independent noisy background variables, see Pearl et al. [17, Ch. 3.2.1]; for noisy
proxy variables we also refer to Kuroki and Pearl [14]. This Markovian DAG (G,P)
leads in our example of Figure 1 to the following factorization, see (3.5)-(3.6) in
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[17],3

P(Y,X,D) = P(Y | X,D) P(X,D)

= P(Y | X,D) P(X | D) P(D).(8)

With this setup in place, one way to approach non-discriminatory pricing is to
require the following:

“Given that a policyholder has the set of characteristics X = x, what is
the expected value of Y , after removing the possible confounding effects of
discriminatory covariates D?”

The idea of the causal (non-confounded) effect4 of X on Y can be captured pre-
cisely by a modification of the DAG G given in Figure 1. Specifically, as illustrated
on the rhs of Figure 1, remove all directed edges to X and set the value of X to
x. The removal of the directed edge D→ X allows us to consider only the (direct)
causal effect of X = x on Y . Note that this operation is different to conditioning.
When conditioning on X = x, the distribution of D is generally affected; but in
the modified graph on the rhs of Figure 1, changes in x do not influence D. This
is precisely the desired effect of removing the ability of inferring discriminatory co-
variates from non-discriminatory ones, as was discussed in Remark 12(a) in Section
2. The above intervention of removing all directed edges to X and of fixing X = x
is denoted by the so-called do-operator do(X = x), see Pearl et al. [17, Ch. 3.2.1].
Henceforth, a price that takes into account only the causal (non-confounded) effect
of X on Y can be defined by

(9) E[Y | do(X = x)],

where the probability P(Y | do(X = x)) still needs to be defined.
The do-operation do(X = x) going from the lhs to the rhs in the DAG G of Figure

1 fulfills the so-called back-door criterion relative to the ordered pair (X, Y ), see
Definition 3.3.1 in Pearl et al. [17]. This means that the do-operation do(X = x)
blocks every path between X and Y that contains an arrow into X. Under these
properties Theorem 3.3.2 (back-door adjustment) of Pearl et al. [17] states that the
causal effect of X on Y is identifiable in the Markovian DAG (G,P) and given by
the formula

(10) P(Y | do(X = x)) =

∫
d

P(Y | X = x,D = d) dP(d).

The following proposition is an easy consequence of definition (9), the definition of
the best-estimate price µ(X,D) and formula (10).

Proposition 14. Assume that the do-operation do(X = x) fulfills the back-door
criterion relative to the ordered pair (X, Y ) in the Markovian DAG (G,P). It holds
that

E[Y | do(X = x)] =

∫
d

µ(x,d) dP(d) = h(CI)(x),

3Formula (8) is nothing else than the Bayes’ rule on the Markovian DAG which more formally
may either be understood in terms of probabilities of events or in terms of conditional distributions.

4For our intended application, the interpretation of “causal” will here be restricted to the

sub-population which chooses to buy insurance cover. No explicit consideration will be taken

w.r.t. which characteristics that will make individuals belong to this sub-population. However,
it is often reasonable to assume that the underlying causal relations should be the same for the

general population and the insured sub-population, although the effects are not the same.
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DISCRIMINATION-FREE INSURANCE PRICING 13

where h(CI)(x) is defined by (6).

Remark 15.

(a) Proposition 14 justifies the discrimination-free price h(CI)(X) of equation (6)
under specific Markovian DAG assumptions, and motivates the choice P∗(d) =
P(d) in Definition 6. In particular, this discrimination-free price is obtained
by adjusting for possible confounding of D w.r.t. X, thus, only measuring the
direct causal effect of X on Y .

(b) Proposition 14 does not say anything about the quality of the induced price
which, of course, will depend on the specific model being used – it merely states
that there is no confounding, given that the assumptions of the corollary are
fulfilled.

(c) It is possible to extend the covariate relations described by Figure 1 by including
unmeasured characteristics U, see Figures 10 and 11, below. Furthermore,
recall that the ambition is not to obtain an as accurate attribution of the effect
of X as possible (this would be the unawareness price of Definition 4), but
the focus rather is on ascertaining that the resulting price is devoid of any
influence from discriminatory characteristics. Thus, if it can be argued that
the covariate relations described in Figure 11 (or any subgraph thereof) can be
mapped into an actually observable graph corresponding to that of Figure 12
(or any subgraph thereof), then Proposition 14 applies again. That is, pricing
based on (6) in the situation described in Figure 12 will be discrimination-free,
but the quality of the induced price may be poor because we do not account
for differences described by U.

4. Attribution of total portfolio premium to individual policies

The difficulty that we still have to deal with is that, in general, a discrimination-
free price has a bias, see (5). This bias needs to be corrected because otherwise
the premium for the entire portfolio may not be at the appropriate level. There is
no canonical way of correcting for this potential bias, the only requirement is that
the bias correction should be discrimination-free too, which excludes complex cost
allocation mechanisms.

The portfolio bias of the P∗-discrimination-free price is defined by

B∗ := µ− E[h∗(X)] = E[Y ]−
∫
x,d

µ(x,d) dP∗(d)dP(x).

Simple bias corrections arise from taking rather different positions. An egalitarian
position is taken by distributing the portfolio bias B∗ uniformly across the entire
portfolio, regardless of any non-discriminatory covariates X. This motivates the
uniformly adjusted P∗-discrimination-free price defined by

(11) π∗,u(X) := h∗(X) +B∗.

Moreover, if we do not consider any covariates (neither discriminatory nor non-
discriminatory ones) we are back in the situation of a homogeneous situation where
we charge the same (constant) premium µ to every policyholder. A drawback of
the uniformly adjusted price (11) is that it may result in negative prices for certain
covariate values X.

A different position is to allocate the bias B∗ by differentiating w.r.t. X in a
still discrimination-free fashion (avoiding any inference of D from X). A natural
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way is to allocate the total premium proportionally to h∗(X), resulting in the
proportionally adjusted P∗-discrimination-free price

(12) π∗,p(X) := h∗(X)
µ

µ−B∗
.

In the remainder of this section we discuss a more sophisticated approach which
chooses the distribution P∗(d) specifically such that the discrimination-free price
h∗(X) is unbiased, i.e. B∗ = 0. As there may be many such distributions that
may satisfy this condition, an additional criterion for choosing P∗(d) is needed. A
standard criterion is to chose the measure P∗ as close as possible to the physical
distribution P(d), subject to the unbiasedness constraint on h∗(X). If the rela-
tive entropy (Kullback–Leibler divergence) is chosen as the divergence measure,
then standard results can be applied, see Csiszár [6]. Specifically, note that the
unbiasedness condition E[h∗(X)] = µ is equivalent to

(13) E∗[ζ(D)] = µ,

where we define

ζ(t) := E[µ(X, t)].

Note, we assume existence of distributions P∗(d) that fulfill (13) which in view of
Section 2.4 needs to be made. The distribution P∗(d) that minimizes the relative
entropy with respect to P(d) subject to5 (13) is given by

P∗(d) = E
[
1{D≤d}

eβζ(D)

E[eβζ(D)]

]
,

for a suitably chosen parameter β. Hence, the premium for a policyholder with
non-discriminatory covariates X = x is defined by (subject to existence)

π∗,KL(x) := h∗(x) = E
[
µ(x,D)

eβζ(D)

E[eβζ(D)]

]
,

which in light of Remark 10(d) may be thought of in terms of h∗(x) = E[Y ∗ | X =
x]. To ease interpretation of this formula, and in order to make the connection
to Remark 10(d) more clear, let D = D be one-dimensional and µ(x, d) ≥ 0 be
increasing in d. Then, for β > 0, we have

π∗,KL(x) = E
[
µ(x, D)

eβζ(D)

E[eβζ(D)]

]
= E [µ(x, D)] + Cov

[
µ(x, D),

eβζ(D)

E[eβζ(D)]

]
≥ E [µ(x, D)] = h(CI)(x),

which corresponds to the situation where the choice P∗ = P would produce a
negative bias (under-pricing). The calculation of π∗,KL(x) assigns a higher premium
to policyholders with covariates X = x such that µ(x, D) is more volatile (this can
be made rigorous but is best visible in approximation (14), below). This represents
policies for which lack of information on discriminatory covariates matters more, in
the sense that there is a higher sensitivity to the uncertainty induced by not using

5Since relative entropy is not symmetric, for the sake of completeness and to avoid ambigu-
ity, following the notation of Csiszár [6], the relative entropy of P∗(d) relative P(d) is denoted

I(P∗(d) || P(d)).
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the discriminatory factor D. One can thus view the bias correction in π∗,KL(x) as
an implicit discrimination-free) risk load.

For small β we have approximation

h∗(x) ≈ E [µ(x,D)] + βCov [µ(x,D), ζ(D)](14)

= E [µ(x,D)] + β
√

Var[µ(x,D)]Var[ζ(D)] Corr [µ(x,D), ζ(D)] .

5. Estimated model

All previous discussion and derivations of discrimination-free prices and indirect
discrimination were conducted under the assumption that the “true” probabilistic
model underlying the portfolio (Y,X,D) is known, represented by the physical
measure P. In practice, an estimated model is used because, typically, the data
generating mechanism is unknown.

Specifically, one starts from data

S = {(y1,x1,d1), . . . , (yn,xn,dn)},

assuming that (yi,xi,di) are i.i.d. realisations of (Y,X,D) ∼ P.
Subsequently, a regression model (in the broader sense of regression models) is

chosen

(15) µ̂ : (x,d) 7→ µ̂(x,d) = µ̂(x,d;θ),

which typically differs from the (true) best-estimate price functional (x,d) 7→
µ(x,d), given in Definition 2, but which should mimic µ(x,d) in the best possible
way. One may specify a fixed functional form for µ̂ in (15) or, in a wider sense,
one can specify an algorithm that generates the mapping (15) from the data S. In
either case, µ̂ will still depend on unknown parameters θ that have to be estimated

from the data S (using a given objective function) yielding estimate θ̂ = θ̂(S).
The resulting S-calibrated regression function

(16) (x,d) 7→ µ̂(x,d; θ̂)

then provides the approximation to the best-estimate price functional (x,d) 7→
µ(x,d). Note that (16) provides an estimate of the best price and, obviously, this
estimate is in general discriminatory because it explicitly considers the discrim-
inatory covariate values d. Moreover, since we use the data S which has been
generated under the physical measure P, the regression function (16) also needs to
be understood under the physical measure P, we refer to Remark 12(c).

The unawareness price functional x 7→ µ(x) can be approximated in an analogous
manner by just dropping d in (15) and (16), resulting in an estimated regression
function

(17) x 7→ µ̄(x; ϑ̂),

where the functional forms µ̂ and µ̄ may differ as well as their parameters θ and

ϑ, respectively. We emphasize that typically µ̄(·; ϑ̂) will indirectly discriminate

w.r.t. d because in the estimation process of ϑ̂ we implicitly use the covariate
combinations (xi,di) which (empirically) contain the dependencies P(d | x) that
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allow inference of D from X. The estimated unawareness price µ̄(x; ϑ̂) can also be
interpreted as an approximation to

E[µ̂(X,D; θ̂) | X = x;S],

using the tower property argument (under the physical measure P).
Typically, also P(d) is not known. Usually, it is estimated by the empirical distri-

bution (nd/n)d, where nd/n is the observed relative frequency of the discriminatory
covariate d in S. This motivates the discrimination-free price

(18) ĥ(CI)(x) =
∑
d

µ̂(x,d; θ̂)
nd
n
,

where we use the estimated best-estimate price functional (16). The price (18) is
discrimination-free in the sense of Definition 6, i.e. the discrimination-free property
is not affected by the fact that we work with an estimated model. While potential

estimation error may result in prices ĥ(CI)(x) that are not very close to h(CI)(x),
the property of discrimination-freeness is preserved within the selected model; we
explore this in more detail in Section 6. When choosing the structure of the re-
gression function µ̂ in (15), we typically require existence of the discrimination-free
price (18) in the sense of Proposition 13.

6. Numerical illustration

6.1. Model and alternative pricing rules. We present a simple health insur-
ance example, demonstrating our proposed approach to discrimination-free pric-
ing. The example we present satisfies the causal relations of Figure 1, such that
discrimination-free prices can be understood as reflecting direct (unconfounded)
causal effects (in an insured sub-population).

Let D = D correspond to the single discriminatory characteristic “gender”, that
is, D ∈ {woman,man}. Furthermore, let X = (X1, X2)′, where X1 ∈ {15, . . . , 80}
denotes the age of the policyholder, and X2 ∈ {non-smoker, smoker}; below we
assume that smoking habits are gender related. We consider three different types
of health costs: birthing related health costs only affecting women between ages 20
and 40 (type 1), cancer related health costs with a higher frequency for smokers and
also for women (type 2), and health costs due to other disabilities (type 3). For
simplicity, we only consider claim counts, assuming deterministic claim costs for
the three different claim types. Moreover, we model all individuals as independent,
having the same exposure (= 1). We assume that the claim counts for the different
claim types are described by independent Poisson GLMs with canonical (i.e. log-)
link function. The three different types of claims are governed by the following
log-frequencies

log λ1(X, D) := α0 + α11{X1∈[20,40]}1{D=woman},(19)

log λ2(X, D) := β0 + β1X1 + β21{X2=smoker} + β31{D=woman},(20)

log λ3(X, D) := γ0 + γ1X1,(21)

based on the joint non-discriminatory and discriminatory covariates (X, D). The
deterministic claims costs of the different claim types are given by (c1, c2, c3) =
(0.5, 0.9, 0.1) for claims of type 1, type 2, and type 3, respectively.

The best-estimate price (considering all covariates) of Definition 2 is given by

µ(X, D) = c1λ1(X, D) + c2λ2(X, D) + c3λ3(X, D).
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This best-estimate price is illustrated in Figure 2 for the parameter values (α0, α1) =
(−40, 38.5), (β0, β1, β2, β3) = (−2, 0.004, 0.1, 0.2), and (γ0, γ1) = (−2, 0.01). The
plots on the lhs of Figure 2 refer to smokers (X2 = smoker), while those on the rhs
to non-smokers (X2 = non-smoker). The solid black lines give the best-estimate
prices µ(X, D) for women and the solid red lines for men. Obviously, these best-
estimate prices discriminate between genders.
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Figure 2. True model: (lhs) smokers and (rhs) non-smokers
with solid black and red lines giving the best-estimate prices for
women and men, respectively. The dotted orange lines show the
discrimination-free prices and the dotted blue lines show the un-
awareness prices.

Next, we calculate the discrimination-free price defined in Definition 6 for P∗(d) =
P(d), see (6), motivated by Proposition 14. It is given by

h(CI)(X) =
∑

d∈{woman, man}

(c1λ1(X, d) + c2λ2(X, d) + c3λ3(X, d)) P(D = d).

For the calculation of this discrimination-free price we need the gender proportions
within our population. We set P(D = woman) = 0.45. The orange dotted lines
in Figure 2 provide the resulting discrimination-free prices for smokers and non-
smokers. Note that these are identical for men and women, such that all price
differences can be described solely by different ages X1 and smoking habits X2,
irrespective of gender D. Moreover, the smoking habits do not allow us to infer the
gender; note that in the exposition so far, it has not been necessary to described
how smoking habits vary by gender.

We compare this discrimination-free price to the unawareness price obtained by
simply dropping the gender covariate D from the calculations (Definition 4). Thus,
we calculate

µ(X) = c1E[λ1(X, D) | X] + c2E[λ2(X, D) | X] + c3E[λ3(X, D) | X]
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The unawareness price requires additional information about the following condi-
tional probabilities

(22) P(D = d | X = x) =
P(D = d,X = x)

P(X = x)
=

P(D = d,X2 = x2)

P(X2 = x2)
,

the last equality following from assuming that the age variable X1 is independent
from the random vector (X2, D). In addition, we set P(D = woman | X2 =
smoker) = 0.8 and P(X2 = smoker) = 0.3. The former assumption tells us that
smokers are more likely women; this is similar to Example 1. As a consequence,
X2 has explanatory power to predict the gender D, and the unawareness price will
therefore be indirectly discriminatory against women. These unawareness prices
are illustrated by the blue dotted lines in Figure 2. The blue dotted line lies above
the discrimination-free price (orange) for smokers (Figure 2, lhs) and below for
non-smokers (rhs). Thus, the unawareness price implicitly allocates a higher price
to women because smokers are more likely women.
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Figure 3. True model: (lhs) smokers and (rhs) non-smokers
with solid black and red lines giving the best-estimate prices for
women and men, respectively. The dotted orange lines show the
discrimination-free prices and with dotted green lines show the un-
awareness prices, for an alternative assumption on P(D = woman |
smoker).

The latter indirect gender discrimination is easily verified by an alternative as-
sumption, namely, that smokers are more likely men, say, P(D = woman | X2 =
smoker) = 0.2. The resulting unawareness prices are plotted by the dotted green
lines in Figure 3. We observe that the smokers are below the discrimination-free
price (orange dotted line), and for non-smokers we have the opposite sign. That is,
in this case women are again indirectly discriminated through their (non-)smoking
habits, again serving as a proxy for the explanatory variable of gender. The break-
even point is P(D = woman | X2 = smoker) = 0.45 = P(D = woman) because in
this case D and X2 are independent, which prevents from indirect discrimination,
and the unawareness price and the distribution-free price are equal.
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6.2. Application on estimated models. The previous discussion has been based
on the knowledge of the model generating the data. We now address the more re-
alistic situation where the model needs to be estimated. To this effect, we simulate
data from (X, D, Y ) ∼ P consistently with the given model assumptions, and sub-
sequently calibrate a neural network regression model to the simulated data.

Specifically, we choose a health insurance portfolio of size n = 100, 000, and
simulate claim counts from the Poisson GLMs (19), (20), and (21), with the choice
P(D = woman | X2 = smoker) = 0.8. An age distribution for X1 is also needed for
the simulation – the chosen probability weights are shown in Figure 4. We assume
that age X1 is independent from gender D and smoking habits X2, as in (22).
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Figure 4. The age frequency used for both genders and smoking
habits to simulate the data.

Listing 1. Simulated health insurance data.
1 ’data.frame ’: 100000 obs. of 6 variables:
2 $ N1: int 0 0 0 0 0 0 0 0 0 0 ...
3 $ N2: int 0 0 1 0 0 1 0 0 2 0 ...
4 $ N3: int 0 1 0 0 1 0 0 0 0 0 ...
5 $ X1: num 36 57 70 49 63 27 41 58 16 34 ...
6 $ X2: num 0 0 1 0 0 1 0 0 1 1 ...
7 $ D : num 0 1 1 0 0 1 0 0 1 1 ...

Listing 1 gives an excerpt of the simulated data. We have the three covariates
X1 (age), X2 (smoking habit) and D (gender) on lines 5-7, and lines 2-4 illustrate
the number of claims N1, N2 and N3, separated by claim types. The proportion of
women in this simulated data is 0.4505 which is close to the true value of P(D =
woman) = 0.45. Our first aim is to fit a regression model to this data, under the
assumptions that individual policies are independent, and that the different claim
types are independent and Poisson distributed. Beside this, we do not make any
structural assumption about the regression functions, but we try to infer them
from the data using neural networks. The independence assumption between the
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claim counts N1, N2 and N3 motivates modeling them separately. Thus, we will
fit three different neural networks to model λ1, λ2 and λ3, respectively. As we do
not use prior knowledge on the data generating process, we will feed all covariates
(X1, X2, D) to each of the three networks.

Listing 2. Neural network architecture used to infer λ1, λ2 and λ3.
1 Design <- layer_input(shape = c(3), dtype = ’float32 ’, name = ’Design ’)
2 #
3 Network = Design %>%
4 layer_dense(units=15, activation=’relu ’, name=’hidden1 ’) %>%
5 layer_dense(units=15, activation=’relu ’, name=’hidden2 ’) %>%
6 layer_dense(units=1, activation=’exponential ’, name=’Network ’)
7 #
8 model <- keras_model(inputs = c(Design), outputs = c(Network ))
9 model %>% compile(loss = ’poisson ’, optimizer = ’adam ’)

Listing 2 illustrates the chosen neural network architecture, using the R library
keras, with which the three regression functions (19)-(21) are estimated. We choose
neural networks of depth 2 having 15 neurons in both hidden layers, the rectified
linear unit (ReLU) activation function, and the canonical link under the Poisson
assumption. Moreover, we select the Poisson deviance loss as our objective function.
This network involves 316 weights that need to be calibrated. We train these weights
of the three networks over 1000 epochs on batches of size 20,000.
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Figure 5. Estimated regression functions λ̂1(X, D) (lhs),

λ̂2(X, D) (middle) and λ̂3(X, D) (rhs) using the neural network
architecture of Listing 2.

Figure 5 illustrates the estimates λ̂1(X, D), λ̂2(X, D) and λ̂3(X, D) of the three
regression functions (19), (20) and (21) respectively, obtained by fitting the three
neural networks. The lhs of that figure gives claim type 1 which is birthing related.
We see a rather accurate shape, with smoking habits correctly ignored, and men
not affected by these claims. Figure 5 (middle) gives the cancer related frequencies.
Also here we receive the same order w.r.t. gender and smoking habits as in (20). Fi-
nally, the rhs illustrates all remaining claims. As, by (21) claims frequencies should
not depend on gender and smoking habits, the variation between lines indicates
that the regression model captures a spurious effect.

Using these estimated frequencies, we calculate the estimated best-estimate
price, (16),

µ̂(X, D; θ̂) = c1λ̂1(X, D) + c2λ̂2(X, D) + c3λ̂3(X, D),
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and its discrimination-free counterpart (18),

ĥ(CI)(x) =
∑
d

µ̂(x, d; θ̂)
nd
n
,

with empirical proportions nwoman/n = 1 − nman/n = 0.4505. These prices are
illustrated in Figure 6: black lines give best-estimate prices for women, red lines for
men, and with the orange dotted lines showing the discrimination-free counterparts.
Comparing Figures 2 and 6 we conclude that the resulting true prices and estimated
prices are rather similar. Of course, by construction the resulting discrimination-
free price is gender neutral within the estimated model, and in our case close to the
theoretical one.
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Figure 6. Estimated neural network model: (lhs) smokers and
(rhs) non-smokers with solid black and red lines giving the best-
estimate prices for women and men, respectively. The dotted or-
ange lines show the discrimination-free prices and the dotted blue
lines show the unawareness prices.

We indicate what happens if we drop the gender variable D from the very begin-
ning, i.e. if we train the networks only on the covariates X = (X1, X2) as considered
in (17). We choose exactly the same network architecture as in Listing 2 except
that we modify the input dimension on line 1 from 3 for (X, D) to 2 for X. These
networks involve 301 weights that need to be trained. The resulting estimated re-

gression functions λ̂1(X), λ̂2(X) and λ̂3(X), ignoring gender information D, are
illustrated in Figure 7. The left-hand side shows that we can no longer distinguish
between gender, however, smokers are more heavily punished for birthing related
costs, which is an undesired indirect discrimination effect against women because
they are more often among the group of smokers (note that the y-scales in Figures
5 and 7 are the same). Finally, merging the different claim types provides the esti-
mated unawareness prices (when first dropping D) as illustrated by the blue dotted
lines in Figure 6, which can be compared with the blue dotted lines in Figure 2.

In our final analysis we illustrate that the (non-)discrimination property does not
depend on the quality of the regression model (15) chosen. We choose a poor model
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Figure 7. Estimated regression functions λ̂1(X) (lhs), λ̂2(X)

(middle) and λ̂3(X) (rhs) using neural networks and ignoring the
gender information D.

(compared to the neural network above) by just assuming GLMs for j = 1, 2, 3

(23) (x, d) 7→ log λ̂GLM
j (x, d) = θ

(j)
0 + θ

(j)
1 x1 + θ

(j)
2 1{x2=smoker} + θ

(j)
3 1{d=woman}.

This model will perform well for j = 2, 3, see (20)-(21), but it will perform poorly
for j = 1, see (19). This is because such a model has difficulties capturing the
highly non-linear birthing related effects, as seen in Figure 8 (lhs).
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Figure 8. GLM estimated regression functions λ̂GLM
1 (X, D) (lhs),

λ̂GLM
2 (X, D) (middle) and λ̂GLM

3 (X, D) (rhs).

In Figure 9 we present the resulting best-estimate prices, unawareness prices, and
discrimination-free prices (in orange dotted lines), as estimated using the GLM. The
first observation is that the resulting prices are a poor approximation to the true
prices of Figure 2, the latter assuming full knowledge of the true model. However,
the general discrimination behavior is the same in both figures, namely, that the
unawareness price discriminates indirectly by learning the gender D from smoking
habits X2. This is illustrated by the relative positioning of blue and orange dotted
lines, with smokers more heavily charged for birthing related costs due to the fact
that smokers are more likely women.

The last step is to adjust for a potential bias, by considering the observed bias

B̂∗ :=
1

n

n∑
i=1

yi −
1

n

n∑
i=1

ĥ(CI)(xi),
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Figure 9. Estimated GLM: (lhs) smokers and (rhs) non-smokers
with solid black and red lines giving the best-estimate prices for
women and men, respectively. The dotted orange lines show the
discrimination-free prices and the dotted blue lines show the un-
awareness prices.

and allocating it to the discrimination-free prices ĥ(CI)(xi), see Section 4. We
refrain from doing this explicitly here. This finishes the example.

Remark. There is one issue that has not been considered so far, and which has
been mentioned in the EU legislation [8], footnote (1) to Article 2.2(14) – life and
health underwriting. Namely, we have implicitly assumed that the measurements
of the non-discriminatory covariates are independent of the discriminatory charac-
teristics. If we think of gender as a discriminatory covariate, this is not necessarily
the case because, for instance, the waist to hip ratios naturally live on different
scales for different genders, but they may still have the same impact on health
related questions. This implies that non-discriminatory covariates may need pre-
processing w.r.t. discriminatory ones, such that the resulting measurements for
different discriminatory characteristics are comparable.

7. Concluding remarks

The aim of this paper is to provide

(a) an actuarial perspective of direct and indirect discrimination;
(b) a demonstration that the omission of discriminatory information leads to indi-

rect discrimination in prices;
(c) a proposal for a simple formula that generates discrimination-free prices;
(d) methods that ensure unbiasedness of discrimination-free prices on portfolio

level, of course, these considerations also apply when transforming the actuarial
tariff into a commercial one; and

(e) a discussion on the role of the data in obtaining discrimination-free prices.

The initial starting point to this paper has been an actuarial one. We have
intentionally avoided a deeper discussion on “fairness”, and, consequently, how
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fairness may be measured. For more on these topics, we refer to Kusner et al. [15]
and the references therein. Moreover, we have also not commented on which factors
should be viewed as discriminatory – this is a societal decision that goes way beyond
our actuarial discussion, see e.g. Avraham et al. [2]. We (only) provide tools to
implement such decisions. Moreover, any such implementation should be analyzed
in terms of possible systemic implications.

An important point worth being stressed once more is that in order to be able to
calculate discrimination-free prices one needs to have access to all discriminatory
characteristics – otherwise it is not possible to properly adjust for the discriminatory
characteristics’ influence. When it comes to gender, this is generally unproblematic,
but if we want to adjust for, e.g., religious or philosophical beliefs, this is information
which in general is not readily available. Customers may perceive it as weird to
be approached with questions concerning this type of seemingly unrelated (and
possible sensitive) information. A concrete example is discussed in De Jong and
Ferries [7], where sexual preference is discussed as a risk factor relating to AIDS.
Another comment concerning sensitive characteristics is the risk of obtaining un-
truthful answers which makes the collected data unreliable, see De Jong and Ferries
[7].

An important position taken in the present paper concerns the role of the overall
price prediction (on portfolio level). We have argued that the overall price predic-
tion may be carried out using all available information, including the discriminatory
one. Given this, it is the allocation of this overall cost that may introduce discrim-
ination, and the discrimination-free pricing may be thought of as an allocation
that avoids this. This in turn implies that it is primarily of interest to assess the
predictive performance of the overall price prediction, since the discrimination-free
(price and its induced) allocation will in general be biased. Still, there is nothing
that prevents us from assessing the quality of the allocation using e.g. bootstrap
techniques and cross-validation.

The argumentation used in the present paper has focused directly on how to
obtain a discrimination-free price (based on the above allocation argument). This
has lead us to a procedure which tells us how to adjust the best-estimate price
(obtained using all available information) to arrive at a discrimination-free price.
In a statistical sense, this is interpreted as a “discrimination-free point estimate”.
A different line of thought instead could be that we try to develop a full statistical
model that is discrimination-free, i.e. sacrificing predictive power by appropriately
disregarding direct and indirect discrimination, this would result in a full statistical
model that provides discrimination-free responses. An example of this approach in
a life insurance context are the gender neutral intensities discussed in e.g. Chen
and Vigna [5]. The main reason for considering prices directly is that we believe
that this approach is closer to actuarial thinking, and because maximal predictive
accuracy is a desirable feature in risk management.
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Appendix A. Further causal diagrams

D

U X Y

Figure 10. Causal diagram governed by DAG G considering un-
measured characteristics U.

D

U X Y

Figure 11. Causal diagram governed by DAG G considering un-
measured characteristics U.

D(U)

X(U) Y (U)

Figure 12. Causal diagram corresponding to Fig. 11 when the
dependence of the unmeasured characteristics U are suppressed.
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