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Abstract
In insurance and even more in reinsurance it occurs that about a risk you only know that it has

suffered no losses in the past say seven years. Some of these risks are furthermore such particular or
novel that there are no similar risks to infer the loss frequency from.

In this paper we propose a loss frequency estimator that copes with such situations, by just
relying on the information coming from the risk itself: the “amended sample mean”. It is derived
from a number of reasonable mathematical first principles and turns out to have desirable statistical
properties.

Some variants are possible, which enables insurers to align the method to their preferred busi-
ness strategy, by trading off between low initial premiums for new business and moderate premium
increases for renewal business after a loss.

We further give examples where it is possible to assess also the average loss, from some market or
portfolio information, such that overall one has an estimator of the risk premium.

Keywords: Loss frequency, loss-free, sample mean, mean squared error, reinsurance

1 Introduction
Assume you have to assess the loss frequency of an insured risk (a single risk or a portfolio) that is not
comparable to other risks, i.e. you cannot rate it with the help of data from other risks. In short, assume
that to assess the loss frequency you have to rely on the loss record of the risk – nothing else is available.

Assume further that – fortunately – past losses predict future losses, i.e. there are no structural
changes in the risk or the environment that make the loss history a priori unreliable for forecasting. So, it
is in principle adequate to do experience rating, which usually means frequency/severity modelling with
parameters estimated from the loss history ([Parodi, 2014a]).

Now assume that – unfortunately – in the observation period (the period of time for which relevant
data about the risk is available) the risk was loss-free. Say in the past seven years no losses occurred
(and data from the years before are unknown, unreliable, or not representative).

This situation may appear remote but is not. Certainly it is quite rare in the Personal Lines business
where we can usually build large collectives of (quite) homogeneous risks providing plenty of loss data,
however, emerging lines of business in their first years are usually so small that they hardly produce
losses. In Commercial and Industrial Lines even among well-established insurance covers there are quite
a lot of particular risks being so different from other ones that it does not seem adequate to assign them
to any collective for rating purposes. When such risks moreover have high deductibles, they are likely
to be loss-free for several years in a row. In the case of non-proportional reinsurance treaties, which are
basically portfolios of risks with a very high first-loss retention, long loss-free periods are rather normal
than exceptional.

In this paper we propose a loss frequency estimator that is able to handle such loss-free situations
reasonably. It can be defined in a mathematically consistent manner and turns out to have desirable
properties both in statistical and in business strategic sense.

Section 2 tells what many practitioners do in the described situation, which leads to several heuristical
properties a loss frequency estimator should have. Section 3 is about the volume dependency of loss
frequencies. Section 4 develops a novel class of loss frequency estimators and finds examples fulfilling the
above heuristical requirements in a strictly mathematical sense. Section 5 gives practical applications
for their use, illustrating situations where the average loss too can be can be assessed (from scarce
additional information). Sections 6 and 7 calculate bias and mean squared error of the developed frequency
estimators and find the optimal one in statistical sense. The numerical examples in Section 8 complete
the picture.
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2 What practitioners do
Typically we expect well-established rating methods to work in all situations we come across. But what
if the loss record consists of: no losses? Then the most common frequency estimator, the sample mean,
equals zero, as well as the Maximum Likelihood estimators in classical loss number models like Poisson,
Binomial, and Negative Binomial (which in the first two models coincide anyway with the sample mean.)

A loss frequency result of zero is unacceptable – we must not provide insurance for free. Thus, we
have to “select” a loss frequency greater than zero. Some pragmatic workarounds:

Additional loss: Some practitioners simply add a loss to the loss record. The idea is that this avoids
zeros and at the same time in case of many losses the results are close to the sample mean. However,
adding always 1 yields an estimator with a considerable positive bias, and maybe it is difficult to
explain to an insured that had 7 losses in 7 years (an outcome that will be considered as not random
at all) that he has to pay for 8 losses.

Additional year: Others adjoin a year with one loss, i.e. if they had seven loss-free years, they choose a
loss frequency of 1

8 . That means assuming a bit less than one loss in the seven observed years. The
question is how to rate the risk the year after if in the meantime a loss occurred. One could then
(correctly in the sense of the sample mean) take 1 loss in 8 years, i.e. the same premium as before,
but it would appear more natural (and would likely be accepted by the insured) if the premium
was somewhat increased after the occurrence of a loss. So, one better keeps the additional year,
thus assumes 2 losses in 9 years, etc. However, if one never drops the additional loss, this leads to
values close to the first approach, hence again to a considerable positive bias.

Additional period: A cheaper variant is to adjoin not just a year, but a whole observation period of
seven more years, i.e. instead of 0 losses in 7 years one takes 1 loss in 14 years. (Equivalently one
can assume 0.5 losses in the 7 observed years.) The question is how to continue in the subsequent
years. It does not seem reasonable to stay with such a long additional period, it should rather be
shortened or dropped, but when and how?

There are certainly more variants out there, but thinking about the above three is sufficient to get quite
some ideas about what first principles we feel a loss frequency estimator should fulfil:

Onemethod: It should work in all situations, not just be a method for loss-free risks. For all possible
outcomes it should be defined in advance what to do. This is not just a practical issue: Only
thoroughly defined methods can be evaluated as for their statistical properties.

Justifiability: Many losses should yield a frequency equal or at least very close to the sample mean,
which is the only result that in case of abundant loss experience (i.e. a low random error) can be
explained to the insured.

Non-zero: All data situations must result in a strictly positive loss frequency.

Bias: The sample mean is unbiased. As in loss-free situations we must charge more than the sample
mean and in situations with many losses we want to charge about as much as the sample mean, we
are likely to get a positive bias. This is okay – the lesser evil than a negative bias – but we should
possibly try to avoid a very high bias.

Monotonicity: Although few losses are likely to be a somewhat random outcome (which justifies a
substantial uncertainty loading), they must be rated cheaper than many losses, which are less
random (lower uncertainty). Lack of losses is a (statistical) item of information, despite of random
errors: if the average loss frequency is say one loss per year, then seven years without a loss
are possible but extremely unlikely. So, long loss-free periods do indicate a rather low frequency,
although it is difficult to say how low.

Smoothness: The steps between the premiums for 0, 1, 2, 3, ... losses need to follow a smooth pattern,
otherwise conflicts arise in the following classical situation: An insured has just suffered a loss, yet
wants to renew the policy. He is indeed prepared to pay a higher premium, but the increase must
appear “reasonable”, which in this context essentially means: moderate.

Ratio: Everyone would agree that a risk having suffered 20 losses in 5 years (4 per year) should pay
twice as much as a risk reporting 20 losses in 10 years (2 per year). Would it not be coherent to
charge twice as much for 5 loss-free years than for 10 loss-free years?
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3 Volume change
The above pragmatic considerations will turn out to be largely translatable into strict mathematics, but
first we need to introduce an important item: the volume dependency of loss frequencies. Many large
risks, above all portfolios, change their volume over time. (A volume in this sense could be e.g. the
number of insured objects, vehicles, persons, etc.) In this case the loss frequency is not constant any
more, but is typically assumed to be proportionate to the volume of the risk: If λ is the loss frequency
and v the volume, we have λ = vθ, where θ is the frequency per volume unit, which is assumed to be
constant over time (unless there are structural changes).

Say the observation period consists of k years. For i = 1, ..., k let be

• vi the volume of the risk in year i,

• λi the corresponding loss frequency,

• Ni the corresponding number of losses (a random variable).

Then we have E (Ni) = λi = viθ. Ni is an unbiased estimator for λi, Ni

vi
is an unbiased estimator for θ.

Now consider the observation period as a whole. Its volume, frequency, and loss number are the sums
of the respective quantities of the single years: v+ = v1 + ...+ vk and analogously for λ+, N+. As above
we have E (N+) = λ+ = v+θ. N+ is an unbiased estimator for λ+.

N+

v+
is a further unbiased estimator for θ. This is the already mentioned sample mean of the observation

period and at the same time the volume-weighted average of the above estimators Ni

vi
.

If we now want to predict the outcome of a future year with (known or estimated) volume ve, we need
an estimator for its frequency λe. From λe = veθ we see that the product of ve with any estimator for
θ is an estimator for λe. To get an unbiased estimator, we can use any ve

vi
Ni or any weighted average

thereof, in particular the (re-scaled) sample mean ve
v+
N+ = N+

k+
.

Definition 3.1. Here we have introduced the volume-weighted number of years k+ := v+
ve
, which equals

k in case all volumes are equal, including the future year.
One could think of it saying in a generalised sense: We have N+ losses in k+ years.

This well-known mathematics of volume-dependent frequencies (see e.g. [Mack, 1997], [Riegel, 2015])
is very easy. However, it shall be noted that in practice it may be difficult to determine an adequate
volume measure, see Section 8.3 of [Parodi, 2014a]. Many readily available and well-established ways to
quantify whether risks are small or large contain both the increase of the loss size (inflationary effects)
and the increase of the loss frequency, e.g. the aggregate sum insured of Property accounts or the
aggregate payroll in the case of certain Third Party Liability risks. If there is only such a volume measure
(“exposure”) available, one has to factor out the inflation, which can be difficult because inflation may
be different from business to business, see Chapter 2 of [Fackler, 2017]. Note that this uncertainty is not
particular to our rating problem, but arises independently of whether there is plenty of loss experience,
or none at all, in all rating situations that require a separate modelling of frequency and severity.

Definition 3.2. Let us call exposures reflecting only the loss frequency frequency volumes.

Although such volume measures usually have lower yearly increases than those embracing inflation,
it would be inadequate to assume that k and k+ are anyway such close that calculating the latter is not
worth the effort. The two can be surprisingly different, as the following example illustrates:

Example 3.3. Consider a steadily growing portfolio whose frequency volumes v1, ..., vk constitute a
geometric sequence: vi+1 = vi (1 + s). Suppose loss reporting is such prompt that at the end of the year
k we already know all losses having occurred in that year and can use them to rate the subsequent year.
Then we have ve = vk+1 and from this we quickly get

k+ =
1− (1 + s)

−k

s

E.g., if we have a yearly increase of s = 10%, then k = 7 years mean k+ = 4.9 years. If the yearly increase
is 20%, then k = 10 years mean k+ = 4.2 years, while 20 years are 4.9 weighted years. In practice, all
periods of steady and rapid growth one day come to an end, but as long as they last, k+ will be much
smaller than k. It is even bounded – from the above formula we see that k+ must be smaller than 1

s .
What in practice lets further increase the difference between k and k+ is the usual delay in loss reporting.
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It would not be untypical that the data of the year k were not complete until late in the subsequent year,
i.e. it can be used at the earliest to rate the year k + 2, hence in the above situation we would have
ve = vk+2, which leads to values for k+ being lower by the factor 1

1+s .

Having discussed the denominator k+ of the sample mean, now we turn to the numerator N+.

4 Designing the estimator

4.1 Basic structure
The idea is to “amend” the empirical loss number N+ in a way to fulfil as many as possible of the
properties we have collected in Section 2. We try the following ansatz:

Create a new frequency estimator by replacing N+ in the sample mean formula by g (N+) with a
suitable function g (n) of nonnegative integers.

Definition 4.1. We call the estimator g(N+)
k+

the amended sample mean (ASM) and the rating method
applying this estimator the ASM method. The function (or sequence) g is called amending function.

Now we can translate the requirements for the frequency estimator into criteria for the amending
function, at least preliminarily.

Definition 4.2. (Provisional definition:) We call an amending function admissible if it satisfies:

g (n) is defined for all n = 0, 1, 2, ... one method
g (n) = n for large n justifiable
g (n) > 0 non-zero
g (n) ≥ n, but not much greater positive but moderate bias
g (n+ 1) > g (n) monotonic
g (n+ 1) /g (n) takes on “reasonable” values smooth

The last requirement (ratio) can be dropped as it turns out to be an immediate consequence of the
ansatz we have chosen: Suppose we have two loss-free situations with 5 and 10 observed years, respectively.
Suppose the volumes are constant (otherwise it does not make sense to require the desired ratio). Then
k+ equals 5 and 10, respectively. The resulting estimate for λe is g(0)

5 in the first case, which is twice as
much as g(0)

10 .
Note that all conditions but the sixth and partly the fourth are mathematically strict. For a clear

definition it remains to get a precise notion of what smoothness and moderate bias mean.

4.2 Credibility-like?
As mentioned at the beginning, we cannot rate the risk with the help of data from other risks, therefore it
is in particular impossible to apply Bayesian/Credibility rating. But, as this is such a strong method for
risks having not enough data for being rated independently, we want to think a moment about whether
we could find a Credibility-like frequency estimator for our situation. That would be a formula looking
like a Credibility premium for one of the risks of a collective, where the parameters that ideally would
be estimated from the whole collective (which we do not have) are “selected” in a suitable way. Some
questions arise: Is such a Credibility-like formula an admissible ASM? If not, is it similar? Is it a better
approach?

Let us look at the classical Bühlmann-Straub model for (Poisson distributed) loss frequencies, see
Section 4.10 of [Bühlmann and Gisler, 2005]. Translated to our notation, in this Credibility model the
empirical loss count N+, which we replace by g (N+), would be replaced by a linear combination

wN+ + (1− w) v+θ0

where θ0 > 0 is the “global” frequency per volume unit of the collective and the weight w has the structure

w =
v+

v+ + const.

This is indeed a very smooth-looking, non-zero and monotonic amending function, which misses justifi-
ability but not by much. However, this and other Bayes methods are optimised for the collective, not
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for the single risk. In particular, the Credibility estimator is unbiased on collective level, but on the
individual level of our risk there is a bias, namely (1− w) v+ [θ0 − θ]. In order to be on the safe side for
our individual risk, we would have to choose a very high θ0, but then we are likely to get a bias being
too high to be acceptable.

In short, Bayes/Credibility does not seem to be the best option in our situation where we could “ima-
gine” a surrounding collective but do not have it, and have no idea what value a global θ0 would have.
We better try to optimise the estimator of our particular risk without relating it other risks. So, let us
continue with our search for good amending functions. We have already found two candidates, see the
table:

n 0 1 2 3 4

g1 (n) 1 2 3 4 5
g2 (n) 0.5 1 2 3 4

g1 is the workaround “additional loss” from Section 2. g2 is “additional period” if we adjoin the period
only in the loss-free case and use the sample mean in case of one or more losses.

Notice that “additional year” is not a candidate, as it yields the formula

N+ + 1

k+ + 1

which is Credibility-like as described above with weight w = v+
v++ve

and global frequency θ0 = 1
ve
:

N+ + 1

k+ + 1
=

k+

k+ + 1

N+

k+
+

1

k+ + 1
1 =

1

k+

(
v+

v+ + ve
N+ +

(
1− v+

v+ + ve

)
v+

1

ve

)
As stated earlier, g1 is too expensive for large n and fails the criterion justifiability. g2 might intuitively

appear very cheap, but we see at a glance that it meets all those requirements that are already defined
precisely. It remains to quantify its bias, but let us first get a clearer concept of smoothness.

4.3 Smoothness
Consider the following typical situation: A risk that suffered n losses in k+ years was rated g(n)

k+
. We

write the risk, then a new loss occurs. To rate the risk for the next renewal of the insurance cover, note
that we now have n+ 1 losses in (k + 1)+ years, which leads to the frequency

g (n+ 1)

(k + 1)+

Especially when one has many observation years and/or rapid volume growth, k+ and (k + 1)+ are close,
such that the relative change in the premium is close to g(n+1)

g(n) . This latter ratio can thus be used as a
benchmark for relative premium increases after one new loss. The following properties come into mind
that should ideally be fulfilled to avoid anger among the insureds:

(1) g(n+1)
g(n) ≈

n+1
n for n > 0

(2) g(n+2)
g(n+1) ≤

g(n+1)
g(n)

(3a) g(n+1)
g(n) ≤

n+1
n for n > 0

(3b) g(1)
g(0) ≤ 2

Interpretation:

(1) The premium increases are similar to the loss record increases.

(2) The more losses we have already had, the lesser the relative impact of a new loss on the premium.

(3a) The premium increases are not greater than the loss record increases. We could say that in a way
g (n) is even smoother than the sample mean, raising less steeply.

(3b) If a loss occurs, the premium might double but should not increase more. (For n > 0 this is ensured
by (3a), where the right hand side cannot exceed 2; for n = 0 we need the extra condition.)
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4.4 Wrap up
Recall that for an amending function to be admissible, we require g (n) = n for large n.

Definition 4.3. We call the integer d where an amending function g starts to equal the identity the
dimension of g.

In this sense g1 has infinite dimension, while admissible amending functions have a finite dimension
d, thus are determined by the d values g (0) , ..., g (d− 1). The smoothness condition (3a) together with
“positive bias” yield the inequality n+1

g(n) ≤
g(n+1)
g(n) ≤ n+1

n , n > 0, which shows that as soon as we have
g (n) = n for an integer n > 0, the same equation holds for n+ 1, hence for n+ 2, . . . , i.e. for all larger
integers. Thus, for an admissible amending function with dimension d we have g (n) = n for all n ≥ d
and g (n) > n for all n < d.

To see whether there is a chance to fulfil the properties (1), (2), and (3), together with the requirements
developed earlier, let us check the lowest dimensions.

Dimension 1: g (n) = n for all n ≥ 1.

We only have to find g (0). (2) means g (0) ≤ 0.5, while (3b) means g (0) ≥ 0.5. Thus, we have a unique
solution g (0) = 0.5 yielding the already known g2. All conditions are fulfilled (bearing in mind that we
should do a closer analysis of the bias).

Dimension 2: g (n) = n for all n ≥ 2.

We have to find g (0) and g (1). (3) yields g (0) ≥ g(1)
2 and g (1) ≥ 1, but the second inequality is already

known (positive bias). Both inequalities together yield g (0) ≥ 1
2 . (2) applied twice yields 3

2 ≤
2
g(1) ≤

g(1)
g(0) .

The left inequality yields g (1) ≤ 4
3 , so altogether we have 1 ≤ g (1) ≤ 4

3 . The right inequality yields
g (0) ≤ g(1)2

2 , so altogether we have g(1)
2 ≤ g (0) ≤ g(1)2

2 . There are (infinitely) many solutions:

• The cheapest choice for g (1) is 1, which leads back to the one-dimensional g2.

• The largest choice for g (1) is 4
3 = 1.333. Then we have 2

3 ≤ g (0) ≤ 8
9 with the most expensive

variant g (0) = 8
9 = 0.889, which we call g3. The first four values of g3 constitute a geometric

sequence where the ratio of subsequent elements equals 3
2 , which means that when one has 0, 1, or

2 losses, then a new loss triggers a premium increase of about 50%.

• We get an intermediate and in a way very smooth variant if we let the first five values of g (n)
constitute a geometric sequence of second order. From the values g (2), g (3), and g (4) we see that
the ratio of second order g(n+2)

g(n+1)/
g(n+1)
g(n) of this sequence equals 8/9, which leads to the first two

elements g (1) = 32
27 = 1.185 and g (0) = 4096

6561 = 0.624. Here the ratio of subsequent elements
decreases slowly (by the factor 8

9 ). It is easy to verify that all conditions are fulfilled. We call this
function g4.

If we look at higher dimensions d, we can see easily that in all cases (3) determines the same lower bound
for the values of g: the one-dimensional function g2.

(2) instead yields an upper bound which between 0 and d constitutes a geometric sequence with ratio
d+1
d . E.g., for d = 3 the function starts with the values g (0) = 81

64 = 1.266, g (1) = 27
16 = 1.688,

g (2) = 9
4 = 2.25, g (3) = 3. Here the ratio of subsequent elements is 4

3 , which means that a new loss
leads to a premium increase of about 33%. Note that g (0) > 1, i.e. in case of zero losses this variant sets
more than one loss. We call it g5.

The analogous upper bounds of higher dimensions d yield even lower premium increases, but the
initial values become very high: one calculates easily g (0) = d

(
1 + 1

d

)−d
> d

e with the Euler number
e = 2.718. For large d these functions will fail condition (1) and anyway have an unacceptably large
bias. To obtain admissible amending functions of higher dimensions, one must look for cheaper variants,
maybe geometric sequences of higher order like g4.

It is clear that there is a trade-off between bias and smoothness: cheap amending functions must have
low initial values but then increase sharply. Functions increasing very moderately from the beginning
must in turn start at a more expensive level.

The following table unites the candidates discussed so far. For a better orientation we leave g1 (n) =
n+ 1 in the overview although it does not meet all criteria. Note that it only fails “moderate bias” and
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“justifiability” and is indeed very smooth.

n 0 1 2 3 4

g1 (n) g+1 (n) 1 2 3 4 5
g2 (n) gmin (n) 0.5 1 2 3 4
g3 (n) gmax2 (n) 0.889 1.333 2 3 4
g4 (n) gso2 (n) 0.624 1.185 2 3 4
g5 (n) gmax3 (n) 1.266 1.688 2.25 3 4
g6 (n) gso3 (n) 0.859 1.390 2.109 3 4

We have added a further variant: the first 6 elements of g6 constitute a geometric sequence of second
order. It is close to g3, a bit cheaper for loss-free risks, but more expensive in case of 1 or 2 losses. The
surcharges after a new loss decrease very smoothly: 62%, 52%, 42%, 33%, . . . , which could be preferred
over constant increases at the beginning of the sequence, as is the case with g2 (2x 100%), g3 (3x 50%),
and g5 (4x 33%).

Further we have (in the second column) given the six amending functions alternative labels that
compactly describe their properties. The first label obviously means “plus one loss”, the second “minimum
g”. g3 and g5 are renamed “maximum g” of dimension 2 and 3, respectively, while g4 and g6 are the
amending functions starting as a geometric sequence of “second order” and having dimension 2 and 3,
respectively.

4.5 IBNR
In some business lines, most markedly in any kind of Third Party Liability (“long-tail”) business, “late
damage” occurs – losses that are reported with a a delay of several months or even years. This is part of
the run-off problem, albeit often the minor part compared to the run-off of the case reserves. But, if we
want to apply the ASM method to such risks, we must take the run-off of the loss numbers into account,
which is often called (true) IBNR: incurred but not (yet) reported. This is in principle straightforward
reserving calculus, but as we cannot estimate any run-off from our data, we have to work with market
experience about the run-off of loss numbers in the respective line of business, which may not easily be
available: We need the so-called lag factors, the inverses of the so-called age-to-ultimate factors. (These
factors are popular for loss amounts, but work analogously for loss numbers.) If we consider the losses
that a risk produces in a certain year, the lag factor aj describes the percentage thereof that is reported
(on average) until j years later. The aj constitute an increasing sequence converging to 100% (more or
less rapidly according to the kind of business, the country, deductibles, etc.), they are discrete points on
the so-called delay distribution (see [Parodi, 2014b] for how it can be estimated and applied).

Suppose we have an observation period of k years with frequency volumes v1, ..., vk. Say the rating
is done late in the year after the year vk. Hence year i has a time-lag of k + 1− i, i.e. the percentage of
losses produced by year i which are known at the moment of the rating equals (on average) ak+1−i. (If
the rating is done some months earlier or later than assumed above, one must choose slightly different
lag factors to reflect exactly the resulting time-lag. If (very) lucky, lag factors on a monthly basis are
available or even perhaps a continuous parametric delay distribution, otherwise interpolations might be
necessary.)

When calculating empirical frequencies (per volume unit) on good data, to account for the losses
incurred in the year i but not yet reported at the moment of the rating, one would gross up the empirical
loss count Ni by the age-to-ultimate factor, or equivalently multiply the volume by the lag-factor:

Ni (1/ak+1−i)

vi
=

Ni
ak+1−ivi

The IBNR-adjusted sample mean is the weighted average of these estimators

N+∑k
i=1 ak+1−ivi

=

∑k
i=1Ni∑k

i=1 ak+1−ivi
=

k∑
i=1

(
ak+1−ivi∑k
l=1 ak+1−lvl

)
Ni

ak+1−ivi

where the weights are notably not proportional to the vi, but to the ak+1−ivi, which can interpreted
as reflecting the part of the risk in the year i for which the losses are known at the moment when the
rating is done. This weighting of the yearly empirical frequencies is not just heuristics, but optimises the
variance in the most common model where variance is proportional to volume: If Ui counts the ultimate
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losses of the year i, the losses out of these being known at the moment of the rating equal

Ni =

Ui∑
j=1

Bij

where Bij ∼ Bin (1, ak+1−i) is a Bernoulli distributed random variable describing whether or not the j-th
loss occurring in the year i has already been reported at the moment of the rating. So, if Ui is Poisson
distributed with mean and variance viθ, one sees quickly that Ni ∼ Poi (ak+1−iviθ).

The IBNR-adjusted sample mean can be adapted to scarce-data situations in a straightforward man-
ner, by using g (N+) instead of N+. The resulting

g (N+)∑k
i=1 ak+1−ivi

is the amended sample mean analogously to the case without run-off issues. Thus, ASM rating with
IBNR works just the same, by simply replacing the volumes vi by the reduced volumes ak+1−ivi.

5 Premium rating
Before the (quite technical) discussion of the bias, let us illustrate the ASM method by calculating some
examples, which are inspired from real-life pricing cases where ASM variants were successfully used.

5.1 Assessing the average loss
The second ingredient of premium rating via frequency/severity modelling is the average loss, which, of
course, cannot be assessed from a loss-free history. However, a few observed losses would not change this:
loss severities are typically skewed, such that estimates for the average loss, whether direct (empirical
mean) or indirect (via a parametric fit of the severity) are volatile unless you have more than say fifty
losses, see [Brazauskas and Kleefeld, 2009] and related papers of the first author, exploring old and novel
(more robust) methods to fit the GPD and other models in case of scarce data. So, no matter whether
one has a few observed losses or none at all, one needs additional knowledge to assess the average loss.
Let us present three cases where this can be done.

• For a very restricted insurance capacity, say a first-loss cover with a rather low limit per loss, one can
use this limit as upper bound for the average loss. This is of course a very pessimistic estimate, but
in case of a low limit it can work well, yielding premiums that don’t appear excessively conservative.
Note that here no additional information is required.

• For layers protecting losses in the million Euro range, as they are common in reinsurance and
industrial insurance, the industry has gathered decades of world-wide market experience, at least in
large lines of business. The observed loss size distributions of such layers are typically heavy-tailed
(having in particular a slowly falling density) and can often be modelled fairly by single-parameter
Pareto distributions

P (X ≤ x) = 1−
(x0

x

)α
where the observed Pareto alphas vary across the business lines, but much less so within the lines.
So practitioners know typical “market” alphas for certain covers, which can complement or replace
a parameter estimate on the specific loss history ([Schmutz and Doerr, 1998], [FINMA, 2006]). The
examples in the following subsection will illustrate this approach.

• Assessing the average loss is much harder for ground-up business, i.e. business covering all losses
from the very first Dollar (or after some low deductible) up to a maximum capacity. Apart from
the case of very limited capacity treated above, the typical situation is that losses can be as high
as several millions of Euros and for the average loss anything between say some hundred Euro and
half a million Euro is thinkable. This is because for the loss severity distribution of ground-up
business very different shapes can be observed: from similar to a Gaussian (albeit slightly skewed)
to heavy-tailed from the first Dollar, see the examples assembled in [Fackler, 2013]. So, there is no
handy market experience like the Pareto-like geometries with typical alphas as one finds them in
reinsurance layers.
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However, there is a special case that can be assessed with not too many calculations and not too
many assumptions, namely portfolios covering a large number of units (meaning insured objects /
persons / activities) which are similar in coverage but quite heterogeneous in size, such that the
maximum loss potential stems from a few very large units, while the vast majority of units is much
smaller in size, say fifty times smaller. The heuristics about this situation is: if only a few units are
large, unless these produce the majority of losses, the average loss must be very small compared to
the maximum loss, say in the range of thirty times smaller. We will illustrate this approach, which
requires quite detailed portfolio information, in the subsection after next.

In all examples we will use the ASM g = g3 = gmax2; the calculation with other variants is analogous.
Let us further emphasise that, just like in traditional experience rating on better data (see Chapter

10 of [Parodi, 2014a]), the volumes and losses (if any) used in ASM rating must be as if, i.e. adjusted to
the terms of the future year by taking into account inflation and other things changing over time.

5.2 Layers of (re)insurance
We assemble some layer terminology, borrowing notation and basic results from [Riegel, 2018].

Definition 5.1. A (re)insurance layer c xs a (c in excess of a) pays the part of each loss X that exceeds
the attachment point (also called retention, deductible) a ≥ 0, up to a maximum (cover) of c > 0, which
mathematically means paying: min ((X − a)+, c).

If e is the risk premium of the layer, we call r := e/c the risk rate on line (RRoL).

If f is the expected frequency of losses exceeding a (layer losses), and h the expected frequency of
losses reaching or exceeding the layer capacity a+ c, we must have f ≥ r ≥ h.

The risk rate on line can be seen as a kind of average loss frequency across the layer area [a, a+ c].
For reinsurance practitioners it is the key figure showing at a glance how frequently a layer is affected by
losses. It usually receives much more attention than the frequencies f and h, firstly because the RRoL
immediately yields the risk premium, secondly because severity distributions in reinsurance layers are
typically heavy-tailed, such that, unless a layer is very long, the quantities f , r, h are anyway of similar
range.

5.2.1 Catastrophe reinsurance (“NatCat”)

Consider a catastrophe excess of loss reinsurance treaty 100 xs 50 (say million US Dollar) covering accu-
mulation losses from natural disasters. An accumulation loss is the aggregate of all single losses caused
by the same natural event.

There are very sophisticated models for the rating of NatCat reinsurance business, but they do not
cover all natural perils everywhere in the world. Assume we reinsure say earthquake, flood, windstorm,
and hail in an exotic country for which such models are not available, such that we can only rely on the
loss experience of the portfolio itself.

Say the portfolio has been loss-free in the past 10 years (to be precise: loss-free “as if”, having taken
into account inflation and portfolio growth). About the time before we either have no data or do not
want to use them because the portfolio was substantially different then.

Accumulation losses are particular in that the loss frequency is not affected by changes in size of the
portfolio. If a portfolio grows, it does not suffer more natural disasters: it suffers bigger accumulation
losses but not more. Here the adequate frequency volume is a constant, hence k+ = k.

We have k+ = 10, so we get the frequency g(0)
10 = 0.889

10 = 8.89%.
To get the risk premium, we need an assumption about the average loss of the layer.

• We could go the most prudent way and assume that all losses are total losses. Then we would get
a risk premium of 100 · 8.89% = 8.89.

• Alternatively, we can use internationally established market Pareto alphas for NatCat reinsurance,
which are close to 1. To be on the safe side, we choose α = 0.8, a very heavy-tailed distribution
yielding an average loss of 61.43 in the layer. This leads to a risk premium of 5.46.

Now assume that a loss occurs and the treaty must be rated for renewal. Then we have one loss in
k+ = 11 years, so for the frequency we rate g(1)

11 = 1.333
11 = 12.12%, which is an increase of 36% compared

to the year before. This is a notable surcharge, but for the high uncertainty inherent in catastrophe
reinsurance it is often possible to enforce such increases after a loss.
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The risk premium now would be 12.12 if we assumed total losses only, and is 7.45 if we use the above
Pareto model.

This is not a quick and cheap rating. If one talks to practitioners, many would confirm that if they,
in the above rating situation, had to come up with a completely judgemental risk premium, they would
probably charge more than what we have calculated here, maybe something in the range of 10 (which
means 10% RoL) before the loss and substantially more after. Here with the ASM method we are able
to be more technical and at the same time cheaper.

5.2.2 Fire per risk cover

Consider a per risk excess of loss reinsurance treaty 4 xs 1 (say million Euro) covering a Fire portfolio.
Per risk means that, unlike the above example, this cover applies to single losses (affecting single objects
in the portfolio), not to accumulation losses from catastrophes. Here volume change does affect the loss
frequency.

You got information about three years only and the frequency volume grows rapidly: v1 = 0.8,
v2 = 1.0, v3 = 1.2, and ve = 1.35. Then we have v+ = 3.0 and k+ = 2.222.

The list of the largest losses (“as if”, having taken inflation into account) in these three years is as
follows: 4.5; 0.1; 0.1.

We see that there was one huge loss, while all other losses were far below the retention. It seems
hopeless having to rate a treaty with such poor data from such a short observation period. But, if we
have knowledge about the loss size distribution of this kind of portfolio, we can give it a try: Market
Pareto alphas for Fire per risk layers are in the range of 2, maybe rather of 1.5 for Industrial Fire
portfolios. This market experience is based on layers in the million Euro or US Dollar range, starting at
say half a million.

Unless the portfolio is mainly Industrial Fire, assuming a Pareto distribution with α = 1.3 should
be well on the safe side. We could apply this distribution to any layer having a retention of about 0.5
or higher. To be even more on the safe side, we choose the somewhat higher model threshold 0.6 and
proceed as if we had to rate two layers, the actual 4 xs 1 and an artificial lower layer 0.4 xs 0.6:

• We first assess the frequency of the latter, which suffered one loss: g(1)
2.222 = 1.333

2.222 = 60.0%.

• We do not need the average loss of this layer, but the frequency of total losses exceeding 1, which
is at the same time the loss frequency of the layer 4 xs 1. In the Pareto model this is a very easy
calculation called Pareto extrapolation ([Schmutz and Doerr, 1998]). We simply have to multiply
the loss frequency of the lower layer by the factor

(
0.6
1

)α and get 30.9%.

• The average loss of the layer 4 xs 1 according to the chosen Pareto model is 1.277.

• Altogether we get a risk premium of 0.394, which means about 10% RoL.

Probably many practitioners would charge much more – there was a recent huge loss and we have
extremely few years of data.

However, one should bear in mind that a high premium after a bad year is often a rather commercial
than technical premium: one charges more because in this situation it is possible to enforce high premiums
and recoup some money quickly. The assessment of the technical premium should be free from such
considerations. Instead, one should try to distinguish which elements of the loss record are much affected
by random effects and which not.

Here the exact size of the biggest loss is clearly very random – recall we have a heavy-tailed loss size
distribution. But the total absence of other losses in the million Euro range, and far below, is unlikely to
be just a random error. We took this into account by modelling the frequency at the threshold 0.6. The
rest of the calculation depends (in an admittedly sensitive manner) on the correctness of the selected loss
size distribution, but here it was definitely tried to be on the safe side. For comparison: had we applied
the very pessimistic α = 1, we would have got a risk premium of 0.579, i.e. about 14% RoL – still less
than what quite some practitioners would rate.

Be aware that if a new loss of say 0.8 occurs, one has to increase the technical premium at renewal, as
the loss exceeds the chosen threshold 0.6 (i.e. affects the artificial layer). The surcharge might be difficult
to explain to the reinsured who will argue that the loss did not hit the layer 4xs 1. But it is imperative
to be coherent. If the model specifications are changed (say to a new, loss-free, model threshold of 0.85)
every time the model leads to an increase being hard to enforce, one is most likely to loose money in the
long run.
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Note how extremely scarce the information was that this ASM rating required: We did not use the
exact loss sizes, but just the information that there was a very big loss and all others were far from hitting
the layer. What we instead needed precisely was the frequency volume of the years of the observation
period. In reinsurance pricing this is mostly calculated from the aggregate primary insurance premium
of the reinsured portfolio by factoring out inflation and premium cycles – a sometimes difficult task
(explored in [Riegel, 2015] and Chapters 2 and 8 of [Fackler, 2017]), which is, however, required for other
reinsurance premium rating methods as well.

Note that layers like the one described here are common in Industrial direct insurance too (for a
multitude of examples see [Parodi, 2014a]), so for such risks ASM rating is in principle applicable. An
adequate volume measure could be the aggregate sum insured, adjusted for inflation.

Lines of business other than Fire can be rated in the same way, as long as we have good market
knowledge about tails of loss size distributions.

5.3 Ground-up business, or: How to use a wrong tariff
Consider a portfolio or a large complex commercial/industrial risk that is (re)insured from the ground up,
i.e. with no or only small deductibles. Large portfolios usually produce many enough losses for classical
experience rating, but single risks and small portfolios (e.g. Special Lines, emerging or newly started
business) can be loss-free over some years, which makes them candidates for ASM rating. As stated
above, ground-up business appears much more heterogeneous than layer business, such that we cannot
expect easy rules like market Pareto alphas. On the other hand, for such risks the (re)insurer may get
quite granular information about how the portfolio/risk is composed, namely whether the single insured
units (objects, persons, vehicles, ...) are large or small with respect to a measure of size indicating the
maximum loss potential, e.g.: sum insured (Property lines, Personal Accident, some Third Party Liability
business), PML/EML/MPL (large Property business), insured value (Ocean Hull), etc. This often comes
with some qualitative info about relevant characteristics of the units, which may be clustered into groups
according to size and characteristics (risk profile), or reported each separately (bordero).

Let us explain how such information can help to roughly assess the average loss. As an example see
the following bordero, where each row represents a risk or a number of risks having equal characteristics.
(Suppose the bordero has been adjusted for inflation etc., representing as if the future year.)

No. size in Euro rate h

1 1’000’000 0.70
1 800’000 1.00
2 500’000 0.80
3 200’000 0.90
5 100’000 1.50
75 50’000 1.12
165 30’000 1.20
490 20’000 1.25

The first and second column show that this portfolio is very heterogeneous as for size, having only a
few units in the million Euro range, while the majority is fifty times smaller. If we knew that the large
units don’t produce more losses on average than the small ones, we could infer that the average loss is
dominated by the many small units and must be in the range of some ten thousand Euro, if not lower.

How could we manage to verify this? Look at the third column, which displays the (gross) premium
rate in per mil of the size. (Note that in case of Property PMLs this rate deviates from the usual premium
rate, which is always related to the sum insured.)

If we have been provided with such premium rates (or equivalently the premiums) and if we believe
that the given premiums are reasonable, the rating is essentially done: one can infer the risk premium
from the given gross premium with low uncertainty. But, this is not the situation we aim to address here.
Instead, we want to study cases where we have “found” or been given premium rates, but don’t trust
them too much, thus want to use them only as a vague indication, e.g. in one of the following situations:

• The reinsurer receives from the insurer a bordero with the premiums actually charged by the latter,
but suspects the overall premium level of the insurer to be inadequate, i.e. heavily underpriced or
overpriced.

• The (re)insurer receives from the (re)insured a bordero without premiums, but with other inform-
ation enabling us to assign premium rates to the units, by using a tariff from “similar” business.
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The bottom line in both cases is the following: We have premium rates from a tariff (or alike) and feel
that this tariff discerns fairly well between good and bad risks (assigning accordingly low/high premium
rates), but we have doubts about the overall level of the tariff. Our goal is to use this tariff only up to a
factor, to be precise:

• use the tariff only to assess the average loss,

• use the empirical loss count (via ASM rating) to assess the frequency.

Notice that this is not a Credibility approach. It seems straightforward to apply Credibility by using
the tariff premium as the global premium, but this is only adequate if one believes that the tariff overall
yields a reasonable premium level. Instead it will turn out that we are able to work with much weaker
(albeit a bit unusual) assumptions, which would lead to the same result if we replaced our tariff by one
having say three times higher or lower premium rates.

We need some notation. For a single unit j we consider the following quantities:

Sj size
Gj gross premium
gj gross premium rate gj = Gj/Sj
Rj risk premium
fj loss frequency
Lj average loss Rj = fjLj
lj average loss degree lj = Lj/Sj
qj loss ratio qj = Rj/Gj
wj auxiliary quantity wj := fj/gj

In business lines insuring units of variable size it is usually possible to split the losses into a (usually
major) part depending strongly (albeit not always proportionally) on unit size and a rather independent
part (e.g. certain legal expenses). Accordingly, one gets a split of the average loss into a “constant” and
a “variable” component:

Lj = cLj + vLj = cLj + vljSj

The idea behind this split is that, while the sizes Sj may vary a lot across units, the average constant loss
cLj and the average variable loss degree vlj = vLj/Sj should usually vary much less and thus be easier
to assess.

Definition 5.2. For a finite set of real figures uj und corresponding weights aj ≥ 0, we write u for the
ordinary arithmetic mean, while for the weighted average we write

au :=

∑
ajuj∑
aj

Let us calculate an upper bound for the risk premium, which can be used as a prudent estimate. In
the following the sums run over the units j and are sometimes indicated briefly by the subscript Σ.

RΣ =
∑

Rj =
∑

fjLj =
∑

fj
cLj +

∑
fj
vljSj ≤

≤ cLmax
∑

fj + vlmax
∑

fjSj = fΣ

(
cLmax + vlmax

∑
fjSj∑
fj

)
= fΣ

(
cLmax + vlmax

fS
)

The final term is the product of the loss frequency of the whole portfolio/risk and an upper bound for
the average loss. As for the pieces of this term,

• fΣ can be estimated (via the ASM method),

• cLmax and vlmax are not known, but in many situations reasonable prudent estimates should be
possible, say Euro 4′000 and 25%, respectively,

• fS is completely unknown. This is the frequency-weighted average of the insured values, but its
weights, the single frequencies, are not known.
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Notice that, however, another weighted average of the insured values can be calculated from the given
data, the gross-premium-rate-weighted average:

gS =

∑
gjSj∑
gj

=

∑
Gj∑
gj

How are these averages related? Noting fjSj = wjGj we calculate

fS
gS

=

∑
fjSj∑
fj

∑
gj∑
gjSj

=

∑
wjGj∑
wjgj

∑
gi∑
Gi

=

∑
Gjwj∑
Gj

∑
gj∑
gjwj

=
Gw
gw

The final term looks promising, although the auxiliary quantities wj are unknown. They are averaged in
two different ways. Can the results be very different?

To see first how much the wj themselves may vary across the units, note that wj = fj/gj = qj/lj . The
loss ratios qj should hardly vary, provided that the tariff discerns fairly well between good and bad risks:
then the loss ratios of large units can be expected to be somewhat higher (due to a lower percentage of
administration expenses and more power to negotiate low premiums), but differences should be rather
small. The lj = cLj/Sj + vlj certainly vary more, yielding possibly smaller values for larger units: this
is plausible for both summands, although huge variation shouldn’t be the norm for the second one. As
this latter will mostly dominate, we can expect the lj to vary rather moderately, such that overall the
wj shouldn’t vary too much, certainly much less than the unit’s sizes Sj . However, overall it is plausible
that larger units have somewhat larger wj .

Let us look now at the weights of the two averages. The Gj are usually much larger than average for
large units, while the gj will mostly be more balanced. Thus, Gw should usually be the larger average.
But, with the wi being fairly homogeneous, it is hard to imagine that the two averages be extremely
far from each other. Of course, assuming Gw ≈ gw would carry approximations too far, but in many
situations it should be fair to assume

fS
gS

=
Gw
gw
≤ C

with a prudently chosen constant, say C = 5. Overall we get as upper bound for the risk premium

RΣ ≤ fΣ

(
cLmax + vlmaxC

gS
)

where fΣ is estimated from the loss history, gS is calculated from the bordero, and the three terms in
between are assessed by expert judgment.

To finalise the premium rating of this example, say we have observed k+ = 5.8 loss-free years. Then
ASM rating yields as estimated frequency g(0)

5.8 = 0.889
5.8 = 15.3%.

To approximate the average loss, we complete the above table. The three last columns show the
subtotals per row.

No. Sj Gj gj stSj stGj stgj
1 1’000’000 700 0.70 1’000’000 700 0.7
1 800’000 800 1.00 800’000 800 1.0
2 500’000 400 0.80 1’000’000 800 1.6
3 200’000 180 0.90 600’000 540 2.7
5 100’000 150 1.50 500’000 750 7.5
75 50’000 56 1.12 3’750’000 4’206 84.0
165 30’000 36 1.20 4’950’000 5’940 198.0
490 20’000 27 1.25 9’800’000 13’230 661.5

Calculating now the sums over all units and collecting quantities estimated earlier, we get∑
Gj = 26′960,

∑
gj = 957.0h, gS = 28.171, cLmax = 4′000, vlmax = 25%, C = 5

which yields
R+ ≤ f+

(
cLmax + vlmaxC

gS
)

= 15.3% (4′000 + 35′214) = 6′011

If the tariff premium is the real one, this means a loss ratio of 22.3%.
Notice that the only input taken from the tariff is the ratio

∑
Gi/

∑
gj , such that, as anticipated,

a three times higher/lower tariff would yield the same final result. We have in fact used only mild
assumptions and in particular not the overall level of the tariff.
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Nevertheless this approach should be handled with care, it is not a panacea for scarce-data situations
of any kind. In particular the assumptions about the homogeneity of the vlj and the wj can break down
easily if among the units there are few very unusual ones, e.g. large units having an extremely low
premium rate being due to a specific high deductible. Most Third Party Liability business is problematic
too. In some cases the sums insured are closely tied to the loss potential (e.g. insolvency insurance), but
for many TPL covers the insureds are rather free to choose their sum insured, or more precisely their
first-loss policy limit, according to their budget and risk aversion. Then very similar risks can have sums
insured between e.g. 1 and 20 million Euro, such that the latter hardly tell anything about the average
loss, which will mostly be far below the policy limit and not very sensitively affected by it.

6 Bias
Having seen premium rating examples, let us now study the statistical properties of N+ and g (N+). We
will sometimes a bit loosely call these the sample mean and the ASM, always keeping in mind that to
estimate the frequency in the year ve, we have to divide by k+. The mathematical properties of N+ and
g (N+) translate to the sample mean and the ASM in an obvious way; it is just more convenient not to
carry the factor k+ along the way through all formulae. For further ease of reading we will mostly write
λ for λ+ and N for N+.

Now we need to finally make our definition of admissible amending functions strict.

Definition 6.1. We call a real-valued sequence or function on (all) nonnegative integers g an admissible
amending function if it is finite-dimensional, strictly positive, strictly increasing, and furthermore fulfils
g (n) ≥ n and the above smoothness criteria (2) and (3).

Compared to the provisional definition, we have dropped the first smoothness condition and “moderate
bias”, as they are hard to make precise via e.g. inequalities, the more so as there is the bias/smoothness
trade-off. It goes without saying that we still want to meet these criteria to some extent, however, it is
more convenient to have them not formally included – the remaining conditions are many enough. Recall
that our five candidates g2 to g6 meet them all, thus are admissible in a strict sense.

An amending function of dimension d (or less) can be represented as

g (n) = n+

d−1∑
j=0

rjχj (n)

with coefficients rj , where χj (n) is the function that equals 1 if n = j and else equals 0. Then we
have g (n) = n + rn for n < d and g (n) = n for n ≥ d. For admissible amending functions the rj are
nonnegative. Notice that this representation can be extended to the case d =∞, yielding an infinite, but
well-defined sum.

Lemma 6.2. With the probability function pj = P (N = j) we have

E (g (N)) = λ+

d−1∑
j=0

rjpj , Bias (g (N)) = E (g (N))− E (N) =

d−1∑
j=0

rjpj

provided g (N) has finite expectation, as is in particular the case if g has finite dimension.

The Lemma applies e.g. to the infinite-dimensional g1, where all rj equal 1.

Proposition 6.3. For any given loss count distribution, the admissible amending function having the
lowest bias is g2 (N).

Proof. The bias is monotonic in the coefficients rj ≥ 0. As stated in Section 4, g2 is a lower bound to all
admissible amending functions, having the lowest coefficients ri.

The fact that g2 is optimal in terms of bias does not mean that we should use this amending function
anyway. If we consider smoothness as very important, we might in return accept a somewhat higher bias.
Say we want the maximum increase g(n+1)

g(n) to be less than 2. Then we cannot use g2, but have to look
for other amending functions having a low bias.

Let us try to calculate the bias for admissible ASMs in general. It is a (linear) function of the
probabilities pj . To calculate the latter, we need a distribution model for N+ and ultimately for the Ni.
As usual, we assume the latter as independent (independence of the years).

We treat the three classical loss count models: Poisson, Binomial, and Negative Binomial (see e.g.
[Klugman et al., 2008]).
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6.1 Poisson
If the Ni are Poisson distributed with expected value λi, then N+ is again Poisson with expected value
λ = v+θ and we have pj = λj

j! e
−λ and in particular p0 = e−λ, p1 = λe−λ. Note that these formulae just

use λ = E (N+), not the single λi.

6.2 Binomial
If the Ni are Binomial with parameters mi (number of trials) and qi (probability of success), then N+ is
possibly not Binomial any more. However, if all qi equal the same value q, then N+ is indeed Binomial
having parameters m := m+ := m1 + . . . + mk and q. This is indeed the most interesting case in the
actuarial practice and can be interpreted as follows: In the year i the risk consists of mi insured units
suffering each either a loss (with probability q) or no loss. What changes over the years is the number of
insured units. So mi is a measure for the frequency volume of the risk in the year i. The expectations
are λi = miq and λ = mq. The probability function of N+ is pj =

(
m
j

)
qj (1− q)m−j , in particular we

have p0 = (1− q)m, p1 = mq (1− q)m−1.
To make this model easier comparable to the Poisson case, we change the parametrisation by replacing

the parameter q by the expected value λ:

pj =

(
m

j

)
λj (m− λ)

m−j

mm
, p0 =

(
1− λ

m

)m
, p1 = λ

(
1− λ

m

)m−1

As for Poisson, we get formulae that require (together with the second parameter m) λ, but not the single
λi. If m is large, the Binomial distribution is very similar to the Poisson (which is in fact the limiting
case for m→∞). Thus, Binomial is probably not worth being studied for large m.

The opposite case instead is very interesting, as it has an important practical application: If all mi

equal 1, we have m = k and the single years have a Bernoulli distribution producing either one loss or no
loss. This reflects the payments of Stop Loss reinsurance layers, which are triggered by the aggregate of
all losses occurring in a year in a line of business: if the aggregate loss amount exceeds the attachment
point, we have a loss to the layer, otherwise the year is loss-free. In situations where the loss probability
can be assumed to be constant over the observation period (λi = q), the adequate model for N+ is indeed
Bin (k, λ), where λ = kq.

6.3 Negative Binomial
Among the many existing parameterisations (see [Fackler, 2011] for an overview) we choose

pj =

(
α+ j − 1

j

)(
λ

α+ λ

)j (
α

α+ λ

)α
where as in the preceding models λ is the expectation, while α > 0 the so-called shape parameter (not
to be mistaken for the Pareto alpha used earlier).

If the Ni are Negative Binomial with parameters λi and αi, then N+ is possibly not NegBin any more.
This applies unfortunately also to the most interesting case in actuarial practice, the well-established
Poisson-Gamma model (see e.g. [Bühlmann and Gisler, 2005], [Klugman et al., 2008]), where the years
have (possibly different) expectations λi = viθ, but the same shape parameter α. We get this model if
we assume that every year is (conditionally) Poisson distributed as above, but the frequency per volume
unit is not a constant, instead fluctuates according to a Gamma distribution with expected value θ and
shape parameter α. Let us look at this case of varying λi and invariable α more closely.

Although (unless the vi are equal) N+ is not Negative Binomial, it is not too difficult to calculate its
probability function. However, unlike in the above Poisson and Binomial cases, the resulting probabilities
are functions of all λi, not just of their sum λ. This is inconvenient for further mathematical analysis as
one would (for fixed λ) have to distinguish an infinity of different cases. Fortunately, it turns out that it
is possible to calculate, at least for the first values of the probability function, upper and lower bounds
depending on λ only.

Let be pi,j = P (Ni = j) and pj = P (N+ = j), i = 1, . . . , k. Then we have

pi,0 =

(
α

α+ λi

)α
, pi,1 =

αλi
α+ λi

(
α

α+ λi

)α
,

pi,1
pi,0

=
αλi
α+ λi

from which we get:
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Proposition 6.4. If N+ is the independent sum of NegBin (α, λi)-distributed loss counts, for its probab-
ility function we have (

kα

kα+ λ

)kα
≤ p0 =

k∏
i=1

(
α

α+ λi

)α
≤
(

α

α+ λ

)α
αλ

α+ λ

(
kα

kα+ λ

)kα
≤ p1 =

{
k∑
i=1

αλi
α+ λi

}
k∏
i=1

(
α

α+ λi

)α
≤ kαλ

kα+ λ

(
α

α+ λ

)α
αλ

α+ λ
≤ p1

p0
=

k∑
i=1

αλi
α+ λi

≤ kαλ

kα+ λ

Proof. Note that all factors and summands in these formulae are positive. Let us first prove the equival-
ences.

The equation in the first row means that p0 is the product of the pi,0. As for the next equation,
one loss in the multi-year period means that there is one year i suffering a loss and all other years are
loss-free, thus

p1 =

k∑
i=1

pi,1∏
l 6=i

pl,0

 =

k∑
i=1

(
pi,1
pi,0

k∏
l=1

pl,0

)
=

{
k∑
i=1

pi,1
pi,0

}
k∏
i=1

pi,0

If we plug in what we already have, we get the second equation. The third one is the quotient of the first
two. Let us now look at the inequalities.

First row: If we take the left inequality to the power −1
kα , we get equivalently

α+ λ/k

α
≥

(
k∏
i=1

α+ λi
α

)1/k

which is an application of the inequality of the arithmetic and the geometric mean. (Note that λ/k is
the arithmetic mean of the λi.)

If we take the right inequality to the power −1
α , we get the equivalent and trivial inequality

k∏
i=1

α+ λi
α

=

k∏
i=1

(
1 +

λi
α

)
≥ 1 +

k∑
i=1

λi
α

=
α+ λ

α

Third row: Here the left inequality is trivial:

αλ

α+ λ
=

k∑
i=1

αλi
α+ λ

≤
k∑
i=1

αλi
α+ λi

The right one is equivalent to
1

k

k∑
i=1

αλi
α+ λi

≤ αλ/k

α+ λ/k

which is an application of Jensen’s inequality using the concave function ψ (x) = αx
α+x .

Finally, the second row is the product of the first and third one.

The latter illustrate that p0 and p1
p0

lie between the corresponding values of two Negative Binomial
distributions, namely those having expectation λ and shape parameters α and kα, respectively. The
latter is the distribution of N+ in case all λi (i.e. all vi) are equal, the former is the limiting case if one
of the λi (i.e. vi) is much greater than the others. One could say that in a way the distribution of N+,
albeit not being NegBin, is a blend of these two NegBin cases.

A look into the proof yields further insight. We have used two inequalities for means, arithmetic-
geometric and Jensen, obtaining the lower bound in the first row and the upper bound in the third row.
These bounds are taken on if the λi, or equivalently the vi, are equal. So, if the frequency volumes are
pretty close, a case fairly common in practice, these bounds are approximately taken on. As for the
remaining bounds in the first and third row, one sees quickly that they are approximately taken on if one
of the volumes is much greater than the others. This case is in a way the opposite of the first one and
rather remote in the real world. So, these latter bounds will hardly be good approximations. Overall
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we can say that in practice p0 will often be close to its lower bound, while p1
p0

will often be close to its
upper bound. Unfortunately, this does not lead to a similar result for p1. The second row is the product
of the first and third one, thus combines two lower bounds which cannot be good at the same time, and
analogously for the upper bounds. So, p1 cannot be very close to any of its bounds.

Whether the derived inequalities are useful, yielding sufficiently narrow intervals for p0 and p1, depends
on the parameters. Scenarios with realistic parameter constellations will illustrate below that we often
get fairly narrow intervals for p0, while intervals are larger for p1. But, as r1 is usually small, the
latter probability has a rather low numerical impact on the bias and other quantities of interest. So, we
overall get good-enough approximations. Before looking at those numerical examples, we finally treat
the classical mathematical criterion for estimators.

7 Mean squared error
The usual way to measure the accuracy of an estimator is the mean squared error (MSE), which in
this paper shall always mean SPEE (squared parameter estimation error), i.e. we look at the expected
squared deviation of the ASM from the parameter E (N+) = λ+ = v+θ. The results of the last section
(together with some more inequalities) will enable us to calculate (approximately) the MSE of the ASM
as a function of λ+ for the above three models for N+, with gives us a complete picture of the quality of
the ASM method for the dimensions 1 and 2.

7.1 Basic results
We have MSE (g (N)) = E

(
(g (N)− E (N))

2
)

= Bias2 (g (N)) + Var (g (N)).

In order to calculate the variance of g (N) = N +
∑d−1
j=0 rjχj (N), we need some formulae:

Lemma 7.1. For j = 0, . . . , d–1 we have

E(χj) = pj ; Var(χj) = pj (1–pj) ; Cov(χj , χl) = −pjpl, j 6= l; Cov(N,χj) = pj(j − λ)

Proof. The (co)variance formulae follow immediately from Cov(A,B) = E(AB)− E(A)E(B).

Lemma 7.2. The variance of N+ is equal to

Poisson: λ

Binomial: λ
(
1− λ

m

)
Negative Binomial: λ

(
1 + λ

κα

)
, where κ =

(∑k
i=1 vi

)2

/
∑k
i=1 v

2
i .

We have 1 ≤ κ ≤ k, where κ = k iff the vi are equal, while the lower bound is (approximately) reached if
one of the vi is much greater than the others.

Definition 7.3. We call κ as set in the preceding lemma the volume homogeneity coefficient.

Proof. The Poisson and Binomial formulae are well known. In the Negative Binomial case for each Ni
we have V ar (Ni) = λi +

λ2
i

α = viθ + (viθ)
2

α . V ar (N+) is the sum of these variances, thus

V ar (N+) = θ

k∑
i=1

vi +
θ2

α

k∑
i=1

v2
i = θ

k∑
i=1

vi +
θ2

κα

(
k∑
i=1

vi

)2

= λ+
λ2

κα

The stated inequality for κ is equivalent to
∑k
i=1 v

2
i ≤

(∑k
i=1 vi

)2

≤ k
∑k
i=1 v

2
i , where the left inequality

is trivial, while the right one is an application of the inequality of the arithmetic and the quadratic mean.
The cases of equivalence follow immediately.

The closer to each other the volumes of the single years, the larger κ. Values very close to k do occur
in practice. Instead, the opposite case that a year dominates such that k is close to 1, is rather remote. In
order to find out what values κ may take on in practice, we go for a moment back to Example 3.3 having
a geometrically growing portfolio with volumes v1, . . . , vk such that vi+1 = vi (1 + s). Some algebra yields
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κ =

(
1 +

2

s

)
(1 + s)

k − 1

(1 + s)
k

+ 1
< 1 +

2

s

Now we have a second upper bound, which is notably independent of k. E.g., for s = 50% (extreme
growth) the coefficient κ cannot exceed 5, mo matter how large k is. As for lower bounds, there is no
easy rule. However, noting that the above formula for κ is an increasing function in k and a decreasing
function in s, we can see quickly that if we have a minimum of 4 years and a yearly increase of not more
than 70%, then κ is greater than 3.

Results for volumes increasing (as is common) in a similar way, but not exactly geometrically, should
be close. Thus, for real-world constellations the assumption κ ≥ 3 is reasonable, apart from rare particular
constellations.

For simplicity of notation we unite the three cases of Lemma 7.2 in one:

Corollary 7.4. Var(N+) = λ+ cλ2, where according to the distribution we have:
Poisson: c = 0, Binomial: c = − 1

m , Negative Binomial: c = 1
κα .

The parameter c is a slight generalisation of the c named contagion by [Heckman and Meyers, 1983] in
order to give an intuitive meaning to the deviations of Binomial and NegBin from the Poisson distribution.
At the same time it is a special case of the contagion as defined generally for loss count distributions in
Chapter 5 of [Fackler, 2017].

Now we have all the ingredients at hand to determine variance and MSE of the ASM.

Proposition 7.5. For the amending function g (N) = N +
∑d−1
j=0 rjχj (N) we have

Bias (g (N)) =

d−1∑
j=0

rjpj

Var (g (N)) = λ+ cλ2 +

d−1∑
j=0

(rj + 2 (j − λ)) rjpj −
d−1∑
j,l=0

rjrlpjpl

MSE (g (N)) = λ+ cλ2 +

d−1∑
j=0

(rj + 2 (j − λ)) rjpj

The formulae extend to the infinite-dimensional case provided the appearing moments are finite.

Proof. Straightforward calculation applying the preceding corollary and Lemma 7.1.

For the non-admissible g1 (n) = n+ 1 we have in particular:

Bias(g1 (N)) = 1, Var(g1 (N)) = λ+ cλ2, MSE(g1 (N)) = λ+ cλ2 + 1

7.2 Comparison with sample mean
Definition 7.6. For any loss count distribution N having probabilities pj and expectation λ, and any
ASM g (N) having finite first and second moment, we define the MSE delta

∆g := MSE (g (N))−MSE (N) = MSE (g (N))−Var (N) =

d−1∑
j=0

(rj + 2 (j − λ)) rjpj

This is the deviation of the MSE of the ASM from the MSE of the sample mean. If the MSE delta is
negative, then the ASM is more accurate than the sample mean (in terms of MSE). ∆g enables us also
to compare different ASMs: The lower ∆g, the lower MSE (g (N)), the “better” g.

When writing ∆g (λ), we interpret ∆g as a function of λ. This is indeed a smooth function, as the
pj are differentiable functions of the expected loss count λ for all three distributions we discuss here (as
well as for many other parametric loss count models).

Proposition 7.7. For any nontrivial loss count distribution and any admissible ASM given, we have
that for very small λ the MSE delta is positive, while for very large λ (provided this is at all possible) it
is negative.
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Proof. For λ ↘ 0 the probability function (pj)j tends to (1, 0, 0, ...), such that ∆g (0+) = r2
0 > 0.

Conversely, if λ is greater than any of the d values j +
rj
2 , we have rj + 2 (j − λ) < 0 for j = 0, . . . , d–1,

such that ∆g (λ) < 0.

Intuitively, for very low λ the (squared) bias must have an enormous impact on the MSE of g, hence
the positive delta. For very large λ instead, the amended sample mean (despite of having a positive bias)
is more accurate than the ordinary sample mean. Thus, in the Poisson and Negative Binomial case for
any admissible ASM there is an interval ]s;∞[ of frequencies λ where the ASM is more accurate than the
sample mean.

In the Binomial case λ is bounded from above by m, hence we cannot have arbitrarily large λ.
Checking different cases of Binomial parameters and ASMs, one sees that for very expensive (and thus
not practicable) ASMs it can occur that the MSE delta is always positive, however, one gets mostly
situations where ∆g takes on negative values for larger λ. There is no easy rule apparent to distinguish
these cases. At any rate, for real-world constellations the Binomial case seems to behave very much like
the two other loss count models.

We will see soon that there is no best ASM in the sense of having globally (for all λ) a lower MSE
than the other ASMs. However, another optimality is worth being considered:

Recall that in principle we were not unhappy with the sample mean. Our intention was to just slightly
amend it in a way to avoid zeros (and possibly to have a smooth rating scheme), but apart from that we
tried to keep ASMs as close to the sample mean as possible. Thus it would be coherent to accept a mean
squared error not too different from that of the sample mean. Lower MSEs are welcome, but perhaps it
is less important to get far lower. Instead, we could try to find ASMs that have a lower MSE than the
sample mean for as many frequencies λ as possible, but no matter how low we get. In other words: we
want to beat the sample mean in as many situations as possible, but don’t bother about high victories.
In this sense we can say:

Definition 7.8. An amending function is superior to another one if it has a wider range of loss frequencies
λ where the ASM is better than the sample mean, i.e. ∆g (λ) < 0.

Proposition 7.9. For any given nontrivial loss count distribution, the admissible ASM having the widest
range of loss frequencies λ where it is more accurate (in terms of MSE) than the sample mean, is g2 (N).
The range of these frequencies is the interval ]0.25;∞[.

Proof. We have ∆g2 (λ) = (0.5− 2λ) p0, so ∆g2 (λ) < 0 is equivalent to λ > 0.25. To prove the proposi-
tion, we show that for any admissible amending function g and any λ ≤ 0.25 we have ∆g (λ) ≥ 0:

∆g (λ) = (r0 − 2λ) r0p0+

d−1∑
j=1

(rj + 2 (j − λ)) rjpj ≥ (r0 − 0.5) r0p0+

d−1∑
j=1

2 (j − 0.25) rjpj ≥ (r0 − 0.5) r0p0

The final term is nonnegative as for all admissible amending functions r0 = g (0) ≥ 0.5.

Note that the proof yields the stronger result that if λ ∈ [0; 0.25], g2 has the (strictly) lowest MSE
among all admissible ASMs: For any of them the second summand (r1 + 2 (j − λ)) r1p1 is positive, so
the inequality is strict. However, as anticipated above, this does not hold for large λ, such that neither
g2 nor any other admissible ASM can be “best” for all λ. Stated precisely:

Proposition 7.10. For parametric loss count distributions whose expectation λ is not bounded from
above, there is no admissible ASM having globally (for all λ) a lower MSE than the other ones.

Proof. We just have to find an admissible amending function g and a frequency λ such that ∆g (λ) is
smaller than ∆g2 (λ). We prove a stronger result.

Let g be any admissible amending function different from g2 and λ be any value greater than r0 and
any of the j +

rj
2 . Then ∆g (λ) is (strictly) smaller than ∆g2 (λ) = (0.5–2λ) 0.5p0:

∆g (λ) = (r0 − 2λ) r0p0 +

d−1∑
j=1

2
(rj

2
+ j − λ

)
rjpj < (r0 − 2λ) r0p0 ≤ (0.5–2λ) 0.5p0

The first inequality is strict as the sum runs from 1 to at least 1, thus is not empty. For the second
inequality note that (r–2λ) rp0 is a decreasing function in r on the interval [0;λ]. As 0.5 ≤ r0 ≤ λ, we
are done.
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For “bounded” distributions like Binomial with fixed m (here λ < m), it could be that g2 has globally
the lowest MSE and MSE delta. However, independently of whether and when this is possible, we feel
that the alternative criterion for “good” ASMs introduced above (wide range of λ where the MSE delta
is negative) is anyway of more interest for the insurance practice.

7.3 Reflecting business strategy
The fact that g2 is the best admissible ASM in terms of MSE (in the way we interpret optimality here),
and in addition has the lowest bias, does not mean that it is the best amending function for all purposes.
As already stated after Proposition 6.3, we could consider smoothness as very important. Then we would
accept a somewhat higher bias and a reduced range of frequencies where the ASM is more accurate than
the sample mean.

ASM smoothness is a hybrid issue – half mathematics, half business. The above criteria (1), (2), and
(3a) reflect consistency in very much the same manner as e.g. monotonicity, though one could possibly
weaken them a bit. The last condition (3b) g (1) /g (0) ≤ 2 is instead a “political” decision, one could in
principle have allowed say triplication or quadruplication of the premium after a loss, which would have
lead to more admissible ASMs of dimension 1 having 0 < g (0) < 0.5 and thus yielding extremely cheap
rates for loss-free risks and huge increases (g (1) ≥ 1) after the first loss.

On the contrary, if one wants to have as few angry clients as possible due to drastic premium raises,
this could be ensured by a stronger condition g (n+ 1) /g (n) ≤ h with a maximum increase factor h < 2,
which would exclude g2 and a range of ASMs of higher dimension.

Such a maximum could also be derived from a reasoning on insurance demand (see in the following
[Hao et al., 2019]), which in basic models is assumed to be proportional to π−ε, where π is the premium
and ε is the demand elasticity. For the latter in insurance partly quite low values are observed, sometimes
lower than 0.5. However, even a very low elasticity of 0.3 would mean loosing 1−2−0.3 = 18.8% of the
insureds after doubling of their premium. According to such a demand model, to retain more clients one
would have to set h lower than 2.

Another business issue is the general level of the rating. If it is felt that the value g (0) = 0.5 is
anyway too low for loss-free situations (recall it means adjoining an observation period as long as the
really existing one), one may introduce a stronger condition g (0) ≥ b with a minimum level b > 0.5,
which would exclude again g2 and certain ASMs of higher dimension (yet not exactly the same as above).
Other market players might rather think about a maximum level g (0) ≤ b′ or a combination of both,
some players might consider similar restrictions for g (1) and possibly a few subsequent values of the
amending function.

Business strategies matter so much for the topic of this (in principle mathematical) paper as we deal
with risks that are very difficult to rate (high model/parameter uncertainty). If a risk can be rated on
tons of good data, normally all (re)insurers will calculate about the same rate and the offered premiums
will usually be very close. In poor-data situations instead, one typically observes a large variety of offered
premiums due to different decisions made by the offering companies, being all partly political rather than
purely actuarial. In short, premiums of “difficult” risks, even when they are rated judgmentally on a case
by case basis, depend somehow (implicitly) on the underwriting policy.

Strategies for insurance portfolios can be very diverse according to one’s position in the market, fin-
ancial strength, etc. However, a bit simplifying they find themselves somewhere in between the following
two:

Growth at any cost: If a company aims for a lot of new business, it needs to be among the cheapest
offers in the market for many risks, but has to recoup quickly via sharp premium increases after
losses. That is exactly what very cheap (and steep) amending functions like gmin and gso2 do.
(For clarity here we use the descriptive names introduced in the last table in Chapter 4.) The
disadvantage of this strategy is that one has to put up with loosing a lot of (opportunistic) clients
just after having paid their first loss, as they will not accept the premium surcharge and will look
for a cheaper offer in the market.

Portfolio must be stable: If a company rather refrains from writing new risks that are likely to be lost
very soon (in the moment of necessary premium increases), it will set a generally higher premium
level but will try to avoid drastic changes. That is exactly what e.g. gmax3 does. The disadvantage
of this strategy is that one might possibly not be able to write a lot of new business.

In spite of the many requirements admissible amending functions must meet, they can indeed have quite
diverse “behaviour” corresponding to very different business strategies. (gmax2 and gso3 can be seen as
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somehow intermediate.) Thus, an insurer should always be able to find an ASM being suitable for the
given strategy and environment. (If not, the aspired strategy might imply a negative bias. In particular
it is not possible to get both very cheap initial premiums and very moderate increases.) In case the
business strategy and/or the acceptance of premium increases are not the same in all lines of business, it
might be a good idea to work with different ASMs.

The great advantage of the ASM approach over case-by-case dealing with poor-data situations is that
one has to decide only once how to proceed in such cases and that the decision is made in advance and
explicitly.

Recall that while being able to reflect some commercial aspects, ASM rating is a step in the calculation
of the technical premium, which should not be mistaken for the offered commercial premium possibly
deviating from the former for a number of (political) reasons. However, when ASM rating is in line
with the underwriting strategy, it might be easier to stay with technical premiums, instead of frequently
having to adjust them (case by case, time-consuming) for a commercial offer.

If an insurer wants to adopt ASM rating, unless they don’t want to be the overall cheapest (use g2

then), it would be natural to consider ASMs in a certain range and make a choice among them according
to criteria like bias and mean squared error. To support such choices and generally to gather more
intuition about how ASMs “behave”, we now study a number of realistic scenarios.

8 Numerical illustration
Before calculating examples, let us explain shortly how we can proceed in the Negative Binomial case
in order to get results depending from as few parameters as possible. The approximations derived in
Proposition 6.4 enable us to study efficiently the amending functions of dimension 1 and 2, which can be
represented as g (N) = N + r0χ0 + r1χ1, such that Proposition 7.5 can be rearranged (via some algebra)
as:

Corollary 8.1. For the ASMs of dimension 1 or 2 we have

Bias (g (N)) = r0p0 + r1p1

Var (g (N)) = λ+ cλ2 + 2 (−λ) r0p0 + 2 (1− λ) r1p1 + r2
0p0 (1− p0) + r2

1p1 (1− p1)− 2r0r1p0p1

MSE (g (N)) = λ+ cλ2 + (r0 − 2λ) r0p0 + (r1 + 2− 2λ) r1p1

∆g = (r0 − 2λ) r0p0 + (r1 + 2− 2λ) r1p1

These four quantities are functions of λ if N+ is Poisson, respectively functions of λ and the aggregate
volume m if N+ is Binomial. Instead, the Negative Binomial case is far more intricate: A look at the
equations of Proposition 6.4 makes clear that for an exact calculation we need α, k, κ (to determine
c), and the single λi. However, if we accept approximate results, we can avoid tedious distinctions of
cases having very similar vs. very different λi: The inequalities of Proposition 6.4 yield upper and lower
bounds for p0 and p1 which are functions of α, k, and λ, enabling us to derive approximations for bias,
variance, MSE, and MSE delta of the ASMs of dimensions 1 and 2 which are functions of α, k, κ, and λ.

If we have a close look at the formulae in the above corollary, we see that all but the second are
linear functions in p0 and p1, such that we can calculate upper and lower bounds summand-wise, by
simply checking whether the factors the two probabilities are multiplied with are positive or negative.
The variance instead is a quadratic form in p0 and p1. The derivation of the minimum and maximum of
such a function on a two-dimensional interval is a tedious analysis exercise. Yet, one could again proceed
summand-wise (with terms collected for p0, p1, p2

0, p2
1, p0p1), though this will possibly not yield the

optimal bounds.

8.1 Real-world parameters
What values for the parameters m, α, k, κ, and λ can we expect to appear in the real world?

We have often used the example of seven loss-free years. This is indeed a typical observation period,
at least for the rating of reinsurance layers. Typically one would have about 5 to 10 observed years, in
the case of NatCat rating it happen to be 15 or more. (The Fire example in Section 5, where k = 3, is
an extreme case, which was presented to demonstrate the power of the ASM method.)

As explained in Section 3, k+ in practice is often somewhat lower than k, so 5 to 10 years correspond
to say 4 to 10 volume-weighted years.
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As for the Binomial parameter m, it was already mentioned that large values m yield almost the same
results as Poisson. Most interesting is the case m = k, which is as different as possible from Poisson and
embraces Stop Loss reinsurance as we have mentioned earlier.

For the Negative Binomial parameter α a wide range of values is observed, see e.g. the examples
in [Mack, 1997]. Very large values like 100 occur, leading again to results not much different from the
limiting case Poisson. On the contrary, one can come across values in the range of 1. It makes sense to
check a variety of (rather low) values for α.

For κ we have discussed the realistic range of values in the preceding chapter: from 3 to k. Notice
that κ affects variance and MSE, but not bias and MSE delta. If we are most interested in the latter, we
do not need to think about κ.

8.2 Results
To illustrate the calculations, two tables are provided in the appendix.

The first one displays bias, MSE, and MSE delta of the ASM g3 = gmax2 together with the variance of
the sample mean Var (N) = λ+ cλ2, for four scenarios: a Poisson, a Binomial and two NegBin variants.
For the latter we provide in addition the ranges for p0 and p1, while for bias, MSE, and MSE delta we
show the upper bounds, all calculated according to the inequalities derived above. The second parameters
for Binomial and Negative Binomial are chosen significantly lower than what would be mostly seen in
practice, in order to be farther away from the Poisson case. Real-world cases will thus usually lead to
figures somewhere in between those of the displayed scenarios and the Poisson case.

We can see that the intervals containing the NegBin probabilities are not really narrow, especially
for p1 in case of low α, but by running calculations with both interval endpoints one can check that the
impact of this uncertainty on the MSE is moderate. The table shows that all four scenarios yield quite
similar results for the MSE delta, with the NegBin scenarios being largely lowest, which is remarkable
as here we display the upper bounds. The similarity of results across scenarios indicates that the MSE
delta is (for realistic parameters) not much affected by model uncertainty. In all examples the bias is
(as expected) large for very low λ and decreases with growing λ, while the MSE delta decreases too, but
notably much more quickly.

The second table and the corresponding chart here below compare, for the (in a way intermediate)
Poisson scenario, the MSE delta for the ASMs g2 to g6. The latter turn out to be (in terms of MSE)
far better than g1 (where ∆g (λ) ≡ 1), which confirms that adding always one loss to the loss record is
too expensive, as well as would be (non-smooth) variants adding say always 0.7 or 0.5 losses. Amending
functions, being sequences (g (n))n converging quickly to the sequence (n)n, are the far better option.
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If we look for the root (i.e. the value λ beyond which ∆g (λ) becomes negative), we find 25% for g2

(already known, holds for any distribution model) and further about 57% for g3, 39% for g4, 97% for g5,
and 64% for g6. This value deserves a name:

Definition 8.2. Let us call the smallest root of ∆g (λ) the critical frequency of the ASM g.

The critical frequency too depends only weakly on the loss count model. By checking a range of
(realistic) parameter constellations one can see that all three models yield very similar results, deviating
by not more than 3% from the stated figures. (g5 and g6 were not calculated for NegBin because we
lack a handy approximation for the probability p2.) It seems that for realistic parameters λ has only one
root, i.e. the range of values λ satisfying ∆g (λ) < 0 is always an interval ]s;∞[ (for Binomial ]s;m[,
respectively). However, for the Binomial model one can find (unrealistic, very expensive) ASMs where
∆g (λ) has no root.

Does the interval of very low frequencies where ∆g (λ) is positive spoil the quality of the ASM method
in the range of (small) frequencies we are mainly interested in? The answer is: maybe in theory, but
in practice no. To see this, notice that the critical frequencies of the analysed amending functions are
(mostly much) lower than 100%. Now consider the rating situation of a risk having a frequency λ below
the critical frequency of the ASM you have chosen. Then in particular λ is (mostly very much) smaller
than 100%. Then the probability of no loss in the observation period is (mostly very much) greater
than 33% – this holds for all three studied distribution models (in case of realistic parameters). But, in
loss-free situations the sample mean is not used: it equals zero, practitioners will somehow “choose” a
frequency > 0. Even in case of one or two losses practitioners often replace the empirical loss count by a
higher figure (recall the workarounds of Section 2), which means doing something similar to ASM rating.
Overall, for the low frequencies λ considered here, the sample mean is in practice unlikely to be applied,
thus it doesn’t matter that here it is (would be) more accurate than the ASM.

In other words: there is no point in comparing the ASM to the sample mean for situations where the
latter is not used. The cases where the ASM is less accurate than the sample mean are largely theoretical,
hardly reflecting real-world pricing situations.

8.3 One-year perspective
We have discussed the frequency λ = λ+ of the observation period throughout most of this paper because
this is the parameter the properties of the ASM mainly depend on. Let us finally come back to the
frequency λe of the risk in the future year, which we wanted to assess. We want to get a feeling for what
the results of this paper mean to this risk in the one-year perspective relevant for pricing.

A critical frequency of say λ+ = 60% corresponds to a frequency λe between 6% and 15% if we assume
a number of volume weighted years between 4 and 10. To get an idea, let us take once again the average
case of 7 years, say k+ = 5. Then λ+ = 60% corresponds to λe = 12%. That means that only if the risk
has a yearly loss frequency well below 12%, the ASM method could in theory be regarded as suboptimal
in terms of MSE (and bias), yet the comparison with the sample mean has not much practical relevance
for such low frequencies leading mostly to rating situations where people don’t apply the sample mean.

Overall we can say that for frequencies larger than about 10% the statistical properties of the ASM
are similar to those of the sample mean or even better. It is indeed remarkable that the ASM method is
able to produce from such few information (7 years loss-free) a fair rating for risks producing about one
loss in 10 years.

If in the case of layer business frequency extrapolation from a lower model threshold is possible (see
the Fire example in Section 5) and if k+ is rather large, we are even able to get a fair rating for layers
with a frequency as low as say λe = 2%. Only for extremely low frequencies (towards the per mil range)
the ASM method will have a huge MSE and bias, but doing a possibly very expensive rating in case of
such frequencies is not a problem, at least in the reinsurance practice where common minimum RRoL
requirements in the range of 1% will not allow much cheaper ratings anyway.

If we, as an extreme case, imagine a risk having a yearly loss frequency of 0.01%, it is clear that even
25 observed loss-free years will lead to a far too high ASM rating result. Such risks cannot be assessed
at all without using any “external” data, whatever the rating method. Experience rating of such risks
can only work if one manages to collect a small portfolio of several hundred similar ones, and rates the
resulting pool together.
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9 Conclusion
The ASM method for the rating of loss frequencies has a lot of desirable properties both from a statistical
and a business driven standpoint. As for the business view:

• It is very easy to implement into existing rating tools. Wherever the sample mean is applied to
estimate the loss frequency (and this is very often the case, even when tools use distributions like
Negative Binomial where it does not coincide with the Maximum Likelihood estimator), one simply
corrects the empirical loss count via the amending function. Nothing else has to be changed.

• In situations with several losses the results will not change (then we have g (n) = n), which ensures
continuity of the rating methodology for such situations.

• In situations with poor data, where traditional rating tools stop working, now one will always get
a loss frequency, even when the loss record is empty.

• The rating results of subsequent years may be volatile, but indeed less volatile than the data itself
(smoothness). If one takes an amending function with low increases, the premium jumps after a
new loss can be kept low.

• Generally, by choosing the amending function appropriately, the ASM method can be aligned with
the underwriting policy.

• Last but not least: ASM rating safes a lot of time. The automatic assignment of a frequency is
certainly much quicker than thinking individually about each case of very poor data.

As for the mathematical/statistical view:

• ASM rating is a consistent method for all situations, from those with abundant loss history to those
with no losses.

• It takes the volume dependency of loss frequencies consistently into account and is altogether in
line with traditional frequency/severity modelling, as it is used when more loss data is available.

• On average the method is on the safe side (positive bias).

• It is more accurate than the sample mean in terms of MSE. The only exception are extremely low
frequencies where, however, in practice the sample mean would hardly ever be used.

In short, the ASM method is a coherent and very efficient extension of traditional experience rating to
scarce-data situations where underwriters and actuaries usually (have to) abandon their well-established
methods.
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Appendix: Tables
All quantities are displayed as functions of λ = λ+.

Table 1:
Four scenarios for g3:

• Poisson

• Binomial: m = 5

• Negative Binomial 1: α = 4, k = 7, κ = 3

• Negative Binomial 2: α = 1, k = 4, κ = 3

λ [%] 0 25 50 75 100 125 150 175 200 250 300 400 500
Poisson
Bias [%] 88.9 75.7 64.0 53.8 45.0 37.4 31.0 25.6 21.0 14.1 9.4 4.1 1.7
MSE .79 .64 .57 .59 .68 .82 1.01 1.23 1.48 2.02 2.59 3.75 4.86

Var (N+) .00 .25 .50 .75 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00
∆g3 (λ) .79 .39 .07 -.16 -.32 -.43 -.49 -.52 -.52 -.48 -.41 -.25 -.14
Binomial
Bias [%] 88.9 75.6 63.4 52.5 42.8 34.3 26.9 20.7 15.5 8.0 3.5 0.2 0
MSE .79 .63 .54 .51 .52 .58 .65 .75 .84 1.00 1.06 .79 0

Var (N+) .00 .24 .45 .64 .80 .94 1.05 1.14 1.20 1.25 1.20 .80 0
∆g3 (λ) .79 .39 .09 -.13 -.28 -.36 -.40 -.39 -.36 -.25 -.14 -.01 0
NegBin 1
p0 min [%] 100 78.0 60.9 47.7 37.4 29.4 23.2 18.3 14.5 9.1 5.8 2.4 1.0
po max [%] 100 78.5 62.4 50.3 41.0 33.7 28.0 23.4 19.8 14.3 10.7 6.3 3.9
p1 min [%] 0 18.3 27.1 30.1 29.9 28.0 25.3 22.3 19.3 14.0 9.9 4.8 2.2
p1 max [%] 0 19.4 30.7 36.7 39.5 40.3 39.8 38.6 36.9 32.9 28.9 21.9 16.6
Bias [%] 88.9 76.2 65.7 56.9 49.6 43.4 38.1 33.7 29.8 23.7 19.1 12.8 9.0
MSE .79 .65 .60 .64 .76 .94 1.20 1.49 1.83 2.56 3.37 5.09 6.94

Var (N+) .00 .26 .52 .80 1.08 1.38 1.69 2.01 2.33 3.02 3.75 5.33 7.08
∆g3 (λ) .79 .39 .08 -.16 -.33 -.44 -.49 -.51 -.51 -.46 -.38 -.24 -.14
NegBin 2
p0 min [%] 100 78.5 62.4 50.3 41.0 33.7 28.0 23.4 19.8 14.3 10.7 6.3 3.9
po max [%] 100 80.0 66.7 57.1 50.0 44.4 40.0 36.4 33.3 26.8 25.0 20.0 16.7
p1 min [%] 0 15.7 20.8 21.6 20.5 18.7 16.8 14.9 13.2 10.2 8.0 5.0 3.3
p1 max [%] 0 18.8 29.6 36.1 40.0 42.3 43.6 44.3 44.4 44.0 42.9 40.0 37.0
Bias [%] 88.9 77.4 69.1 62.8 57.8 53.6 50.1 47.1 44.4 40.0 36.5 31.1 27.2
MSE .79 .66 .65 .76 .97 1.28 1.69 2.17 2.71 3.97 5.42 8.84 12.93

Var (N+) .00 .27 .58 .94 1.33 1.77 2.25 2.77 3.33 4.58 6.00 9.33 13.33
∆g3 (λ) .79 .39 .07 -.17 -.36 -.49 -.56 -.60 -.62 -.62 -.58 -.49 -.40

Table 2:
Comparison of the MSE delta of five admissible amending functions, Poisson model:

λ [%] 0 25 50 75 100 125 150 175 200 250 300 400 500
g2 = gmin .25 .00 -.15 -.24 -.28 -.29 -.28 -.26 -.24 -.18 -.14 -.07 -.03
g3 = gmax2 .79 .39 .07 -.16 -.32 -.43 -.49 -.52 -.52 -.48 -.41 -.25 -.14
g4 = gso2 .39 .12 -.08 -.21 -.30 -.36 -.38 -.39 -.38 -.33 -.27 -.16 -.09
g4 = gmax3 1.60 1.07 .62 .24 -.06 -.30 -.48 -.61 -.70 -.76 -.74 -.56 -.37
g5 = gso3 .74 .39 .12 -.10 -.26 -.38 -.46 -.51 -.53 -.53 -.48 -.33 -.21
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