Real-time climate event analysis tools

JOURNÉES

IARD 2024

Auteurs

Hani Ali, Head of CAT Analytics, France and Belgium, Gallagher Re David Wilkie, Senior Analyst, Gallagher Re

21st March 2024

S'adapter dans un contexte inflationniste et à risques croissants

21st March 2024

Agenda

- 1. Introduction
- 2. Event response Automation
- 3. Storm Ciarán before, during and after
- 4. Industry impact
- 5. Future of event response
- 6. Conclusions

Event response : is about helping insurers LARD 2024 to anticipate and manage resources

S'adapter dans un contexte inflationniste et à risques croissants

Event response automation

- Follow the event at European level with Footprints plots and Statistic of potentially affected areas by Country. ٠
- When threshold in gust speed and percentage area affected is triggered, statistics for France / Belgium /Lux of Client potentially affected are generated, and customized Excel reports with summary by subdivisions (windspeed bands, sub-entities, LOBs, Cresta, Postcode) are created.
- Preliminary Loss estimations by client using a Machine learning tools followed by more deep analysis on similar historical events and SSEs

28 GAN

25 GAN

26 GAN

31 CR

26 GAN

26 GAN

36 CR

1106

731

687

336

3415

3 408 662 040

1 973 671 147

1 878 582 319

1 477 499 939

1 121 091 995

073 759 61

971 575 340

969 728 199

Storm Ciarán response – Before

- Forecast
 - "bomb cyclone" a low pressure system crossed the Atlantic in late October 2023 and developed into a strong storm rapidly as it moved towards France. Severe weather warnings were put in place over parts of France and the UK
 - The late strengthening made predicting wind speeds accurately difficult
- Gallagher Re Early Alert forewarned clients that substantial event was likely
- Event loss forecast Fully automated process highlights potential for large loss. Estimate is based on robust Machine learning tools depends on the forecast wind speed maximum if there is high uncertainty in footprint this will impact losses.

JOURNÉES

IARD 2024 5

Storm Ciarán response – During

- Strong winds impacted North-West of France, Channel islands, Southern coast of UK on 02/11/23
- Forecast evolved 1) initially notable wind speeds in Brittany, 2) then expanded to Brittany and West Normandy.
- Observed wind speeds were stronger than forecast and covered a larger area
- · Maximum wind speeds across Brittany
 - Finistère wind speed was record breaking (207 km/h, 58m/s)

JOURNÉES

IARD 2024 5

Storm Ciarán response – During

Large uncertainty in wind speed forecast caused by late intensification as the storm tracked towards France. This can be seen in the differences between forecast tracks:

- Observed track sits lower than any forecast
- Particularly ECMWF sits furthest North (important as strongest winds occur towards the South of the track)
- Changes in track explain underestimation of forecasts compared to the observed footprint

EuroTempest post-event observed footprints give valuable information that is necessary for accurate estimation of event loss

JOURNÉES

IARD 2024

Storm Ciarán response – After

Shortly after Ciaran's extreme winds subsided Gallagher Re issued an **Event response report** which summarises:

- Meteorological conditions caused extreme wind speeds
- Qualitative event comparison
 - Manually compare observed footprint to historically noteworthy events
 - Gives a "feeling" of how event compared to well-known analogues
- Initial damage estimate:

"Insured losses from Ciarán were currently not anticipated to reach an overall 2023 inflated event level of Klaus (2009) EUR4.6 billion, Christian (2013) EUR2.2 billion or Eunice (2022) EUR3.4 billion."

Observed wind footprints for Klaus (left) and Christian (middle). Ciaran (right) is based on the ECMWF forecast from EuroTempest.

L	Storm	Year	France	Belgium		
	Lothar	1990	Similar peak wind speeds but Intense winds from Lothar impacted a much larger area. Klaus had similar extent but was less intense Similar extent but Christian less intense in Brittany			
	Klaus	2009				
	Christian	2013				
	87J	1987	Similar extent but 87J had much higher intensity along channel coast			
	Eunice	2022	Eunice mainly impacted north-east not Brittany	Similar, Eunice slightly more intense inland		
	Ana	2017	Similar extent but the most intense winds in Ana impacted further south and were less intense in Brittany	N/A		
	Zeus	2017	Zeus had similar impacts in Brittany but not along rest of channel coastline. Zeus was most intense in southern France, unlike Ciaran	N/A		

Storm Ciarán response – After

- The peak wind speeds from Ciarán approached those reached during storm Lothar (1990). Peak observations of 125-175 km/h inland (34-50 m/s).
- This is relevant as Lothar was one of the most extreme wind storms to impact France in a 40-year observation period.
- However, area impacted much smaller than Lothar
- 6th largest wind event loss to impact France (Gallagher Re event loss database)

JOURNÉES IARD 2024 👼

21st March 2024

Storm Ciarán response – Estimating losses

"Similar Stochastic Events" are events selected from a catastrophe model that are similar to the observed event. They allow rapid loss estimation for both the market and individual insurers.

How do we select them?

- Analyse the full catastrophe model event set (40-50k footprints)
- Pre-filter evaluate all footprints at key exposure concentrations (top 10 cities by population per country)
- Filter compare footprints to observation and rank in terms of wind speed error and spatial correlation
- Average of top 10 events provide market loss estimate

Ciarán Loss Estimate = actual ~1.9Bn Euro (Europewide)

Automated process can deliver a loss estimate within hours of receiving the postevent footprint, model vendors can take much longer.

Ciaran Industry Loss

How to check that an event is a good match?

- 1. Compare the footprint to the observed
- 2. Check for bias in predicted wind speeds
- 3. Check correlation in wind speed

Benefits:

- Use already trusted tool
- Rapid estimation of losses
- Built in sensitivity "what-if" scenario check

How important was Ciaran?

Reinsurance allows losses to be shared between insurers (cedant) and reinsurer.

- Reinsurance programs are typically structured in layers (Excess of Loss treaty)
- Typically visualised as a tower where "10M xs 20M" means a layer covering losses between 20M and 30M Euros
- Losses only trigger a payout when they exceed a layer threshold. In the example the loss would cause a payout from layer 1 and 2

Ciaran caused:

- Notable loss to insurers ~1.9Bn Euro sitting between a 10-15 year return period in France (on a market-wide basis)
- The share covered by reinsurance varies considerably between insurers
- The very high peak wind speed but relatively small footprints caused high losses for insurers with substantial exposure in Brittany
- However, on a book balanced across France only small reinsurance recoveries
- This event highlights the importance of analysing and balancing risk aggregations

Brittany exposed loss

retained

Retention

What's the future of event response

JOURNÉES IARD 2024 õ

The current approach works well for European Windstorms where footprints are relatively large compared to other perils. For flood and severe convective storm (hail) which are important types of loss a different approach is needed

	~~~			
Event footprint any peril	External data	Cloud platform	Apply financial terms	Event loss estimate
Same method applied for: • Windstorm • Hail • Flood	<ul> <li>Key information:</li> <li>Company exposure - to calculate impact on portfolio</li> <li>Vulnerability curves – per peril to calculate damage at a given location</li> </ul>	Ties process into a efficient and reliable framework	XoL treaty	Rapid event loss estimation for: • event impact • reinsurance recoveries