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Risk Components (Basel Il) now Basel lll even Basel 3.5 ...
(also Solvency Il (20167), SST (2011!))

Credit Risk (+/- 1988, 1995-2000)

Market Risk  (+/-1995)

Operational Risk

Business Risk

(+/- 2000)

Operational Risk: The risk of
loss resulting from inadequate
or failed internal processes,
people and systems or from
external events. Including legal
risk, but excluding strategic
and reputational risk.




How to model Operational Risk ... if you must!

* Discussion between “Yes we can” and “No you can’t”
* Banking versus Insurance:
An example: Lausanne 2006 = BPV, EBK, FINMA ...

* The record loss as of today: BoA’s 16.65 billion USD settlement with
the DOJ (August 2014), of which14.54 billion USD corresponds to
BCBS Event type “Suitability, disclosure and fiduciary” and Business
Line “Trading and sales”

* One thing is for sure:
Operational Risk is of paramount importance! (9-13% of TRC)
But how reliably can it be quantitatively risk managed?



A quote from RISK.net, 13 March 2013:

* "In the past three years, we have seen, again and again, massive legal
claims against banks that dwarf the sum of all the other operational risk
loss events. That's a major issue, and | don't think many of the current risk
models are reflecting this reality," says Paul Embrechts, professor of
mathematics at ETH, a university in Zurich.

* He is referring to cases such as those arising from the pre-crisis mortgage
boom, which produced a $25 billion settlement in February 2012 between
the US and five mortgage servicers: Ally Financial, BAML, Citi, JP Morgan
and Wells Fargo. More recent regulatory settlements include December's
$1.9 billion money-laundering penalty for HSBC and the $1.5 billion Libor
rigging fine for UBS. With US banks' mortgage misdeeds still not fully
settled, and regulators around the world still pursuing Libor investigations —
while civil cases wait in the wings — the pain is likely to continue.



Quotes from “Bank Capital for Operational Risk: A Tale of Fragility and
Instability”, M. Ames, T. Schuermann, H.S. Scott, February 10, 2014:

* On May 16, 2012, Thomas Curry, the Comptroller of the Currency
(head of the OCC), said in a speech that bank supervisors are seeing
“operational risk eclipse credit risk as a safety and soundness
challenge.” This represents a real departure from the past when
concern was primarily focused on credit and market risk. A major
component of operational risk is legal liability, and the recent financial
crisis, a credit crisis par excellence, has been followed by wave after
wave of legal settlements from incidents related to the crisis.

* To again quote Curry (2012), “The risk of operational failure is
embedded in every activity and product of an institution.”



As a conseguence, a lot has been written on the topic:
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The regulatory approaches towards OpRIisk capital:

(A1) The Elementary Approaches: |3
- The Basic Indicator Approach  RCg(OR) = A Zmnax(GIf_f. 0)
! =1
isk weight 15%
where z, = 577_, | and Gl = Gross Income (year t-i) el
- The Standardized Approach
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RCL(OR) = E ) " max [Z BiGI, {}}
=1 j=1

where the regulatory weight factors 12% < 3; <18%, j=1, ..., 8 (BLs)
Note: recent BCBS document yields different weights and suggests replacing
Gl (Gross Income) by a new, so-called Business Indicator (BI).

(A2) The Advanced Approaches: AMA and in particular LDA = next slide



Loss Distribution Approach (LDA) within AMA-Framework

RT, - RT, | - RT;

BL4
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i,k
BNELW Internal, external,
expert opinion data

Matrix structured loss data
Blg




A complicated stochastic structure
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“Insurance Analytics™ Lig ™ = ;1 ik
Xf_k . loss severities
- Ngfjl . loss frequencies

together with left-censoring, inter-dependencies, reporting delays
(IBNR-like), non-stationarity, insurance cover,



The two relevant (regulatory) risk measures:

Value-at-Risk (VaR) and Expected Shortfall (ES)

VaR,(X)
For p € (0,1),

VaR,(X) = Fy' (p) = inf{x € R : Fx(x) > p}

ES,(X)

Forp € (0,1),

1
ES,(X)=—— [ VaR,(X)dg = E|X|X > VaRk,(X
() = 7 [ VaRy(X)dg = B[XIX > VaR,(X)]




Basel |l - Guidelines

¢ Risk measure: VaR

e Time horizon: 1 year

e Level: 99.9% (1 in 1000 year event!)
(Extreme event!) “Darwinism”

» Otherwise: Full methodological freedom (within LDA)



The Main LDA-Steps towards a Total Capital Charge

(LDA = Loss Distribution Approach, within AMA = Advanced Measurement Approach)

e Estimation of marginal VaR: VaR,,, ... ?VaRi (1)

(a0 = p throughout)

d
e Additional Aggregation: \ﬁ: = Emz (2)
k=1

Two very big IFs

.—--"_"'--h—l—

?
e Diversification: Operational Risk Capital = VHRSHI < VaR (3)

¥




Some comments on (1), (2) and (3):

* For (1), estimating extreme quantiles, an EVT-based picture
tells a thousand words =2 next three slides!

e Equation (2) is fully understood: Given that d risks are
comonotone, then the VaR of their sum is the sum of their
VaRs, hence (2) yields the VaR of the aggregate position
under comonotonicity (“maximal correlation, perfect
positive dependence, ... ”)

* Definition: Random variables X4, ..., X4 are comonotone if
there exists a random variable Z and d increasing functions
1, ..., €4 SO that X; = &;(Z), almost surely, i=1, ..., d.

* For (3): model - and dependence-uncertainty (< this talk)



(1) Estimating extreme quantiles (VaR)
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Danish Fire Loss Example

The Danish data consist of 2167 losses exceeding one million Danish
Krone from the years 1980 to 1990. The loss figure is a total loss for
the event concerned and includes damage to buildings, damage to
contents of buildings as well as loss of profits. The data have been
adjusted for inflation to reflect 1985 values.

Very similar to OpRisk data!
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99%-quantile with 95% CI (Profile Likelihood):
27.3 (23.3, 33.1)

99% Conditional Excess: E( X | X > 27.3) with Cl
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Concerning (2), recall that

* In general, VaR is not sub-additive, typical such cases occur for risks
which are either very heavy-tailed (infinite mean), very skewed or
(whatever the marginal dfs, e.g. N(0,1) or Exp(1)) have special
dependence: all these cases are relevant for OpRisk!

* VaR is sub-additive (coherent) for multivariate elliptical risk factors like
the multivariate normal or Student-t; not relevant for OpRisk.

* \VaR and (hence also) ES are additive for comonotonic risks.

* Hence for ES, adding up the ES-contributions from the marginal risk
factors always yields an upper bound for ES of the sum, and the upper
bound is reached in the comonotonic case.

* For VaR this is NOT TRUE and this is relevant within the OpRisk context!



(3) Model - and Dependence-Uncertainty

e Standard Basel llI(+) procedure: aggregate the OpRisk losses BL-wise
* Estimate the resulting (8) VaRs

» Add these numbers up leading to a global estimate VaR™

* Recall de notion and importance of comonotonic dependence

* Invoke a diversification “argument” to bring down regulatory capital
from VaR™ to a factor (1 — 8) VaR " where often § = 0.2 - 0.3

* However the non-convexity of VaR as a Risk measure may lead to true

measures of risk (capital) larger than VaR™, hence an important
qguestion concerns the problem of calculating best-worst bounds on
risk measures of portfolio positions in general and VaR and ES more in
particular



A general fundamental problem in Quantitative Risk
Management (relevant for OpRisk modelling):

@ Risk factors: X = (X;....,X,)
@ Model assumption: X; ~ F;, F; known,1=1,....d
@ A financial position W (X)

@ A risk measure/pricing function: p(W (X))

Calculate p(¥ (X)) |



also denoted by S,
Example:

o U(X) =Y, X
@ p=Vak,or p =ES,
Challenge:
@ We need a joint model for the random vector X
@ Joint models are hard to get by

We will focus on the above special choices of W and p.



For a given risk measure p denote

D(Sq)=sup{p(X X ):X;~F;,i=1,..d}
and similarly

p(Sq)=inf{p(T¢ x; ): X;~F,i=1,..d}

where sup/inf are taken over all joint distribution models for the
random vector (X, ..., X4) with given marginal dfs (F; , ..., F),
or equivalently over all d-dimensional copulas.

We will consider as special cases the construction of the ranges:

_—lvaR VaR) and (ES, ES)
unknown — — \

referred to as dependence-uncertainty ranges.

known: comonotonic case



Summary of existing results:

d=2:
o fully solved analytically
d > 3:

e Homogeneous model (F; =--- = Fy)

o E5,(54) solved analytically for decreasing densities, e.g.

Pareto, Exponential
o VaR,(S54) solved analytically for tail-decreasing densities,

e.g. Pareto, Gamma, Log-normal

@ Inhomogeneous model

@ Few anal}rtical results: current research

@ Numerical methods available: Rearrangement Algorithm



Sharp(!) bounds in the homogeneous case:

Sharp VaR bounds (Wang, Peng and Yang, 2013)

Suppose that the density function of F is decreasing on |b, c0)

for some b € R. Then, forp € [F(b),1), and X S P,\

VaR,(S;) = dEX|X € [F'(p+ (d —1)c),F'(1—0)]],
where c is the smallest number in 0. %(1 — p)| such that

oriene ET (Dt > 55 ((d = DF Y p + (d = 1)) + F71(1 = ).

>

Red part clearly has an ES-type form.

_ _ More general result
@ c =0: VaRp(Sd) — ESp(Sd). = in the background!




Sharp VaR bounds II

Suppose that the density function of F is decreasing on its

support. Then forp € (0,1) and X 4 F, \

VaR,(S4) = max{(d — 1)F'(0) + F ' (p),dE[X|X < F'(p)]}.

Stronger condition!

Sharp ES bounds (Bernard, Jiang and Wang, 2014)

Suppose that the density function of F is decreasing on its
support. Then forp € (1 —dc.1),qg = (1 —p)/d and X SE

1T L
E%w@{hé(m D)E-1((d — 1)) + F~1(1

= (d — I)ZLES(d—'I)q(X} + ES'l—q(X):

where c is the smallest number in [0, 1] such that

=

Ju—e FHB)de = 58 ((d = )F1((d — 1)e) + F71(1 —0)).

@ One large outcome is coupled with d — 1 small outcomes. : basic idea behind the proof



Bounds in the Inhomogeneous case:
the Rearrangement Algorithm (RA)

(Embrechts, P., Puccetti, G., Ruschendorf, L. (2013): Model uncertainty and
VaR aggregation. Journal of Banking and Finance 37(8), 2750-2764)

@ A fast numerical procedure
@ Based on the CM-idea
@ Discretization of relevant quantile regions

@ ( possibly large  (~1000s)

@ Applicable to VaR,, VaR, and ES,

CM = Complete Mixability



Complete mixability, Wang and Wang (2011)

A distribution function F on R is called d-completely mixable
(d-CM) if there exist d random variables X1....,X; ~ F such
that

P(X1+---+X;=dk) =1,

for some k € .

Related concepts:

- d-mixability

- inhomogeneous case

- strong negative dependence
general extremal dependence, ...



Home Sample codes R packages Further Extensions OR framework  Contributors License

The Rearrangement Algorithm project

The Rearrangement Algorithm (RA) is an algorithm which has been introduced in [1]
to compute numerically sharp lower and upper bounds on the distribution of a
function of a number of dependent random variables having fixed marginal

distributions.

The algorithm has been then developed further to:

- compute sharp bounds for the VaR/ES of high-dimensional portfolios having fixed marginal
distributions; see [2], [3].

- compute sharp lower and upper bounds on the expected value of a supermodular function of d
random variables having fixed marginal distributions; see [4].

For full details, see https://sites.google.com/site/rearrangementalgorithm/



Example 1: P(X; >x)=(1+x)"% x=20,i=1, ... ,d

Bounds on VaR and ES for the sum of d Pareto(2) distributed rvs for S

p = 0.999; VaR;{ corresponds to the comonotonic case.

DU-gaps d=8|d=>56
434 VaR, 31 53
ES, 178 | 472
VEIR;]L 245 1715 | Comonotonic case: sum of marginal VaRs = d x marginal VaR
VaR, 465 | 3454
320 ESF 498 3486 Comonotonic case: sum of marginal ESs = d x marginal ES
| mp,/VnR; 1898 | 2014 +/- factor 2 can be explained: Karamata’s Theorem
can be explained ES,/VaR, 1071 | 1.009 | */-factor1can be explained : next slide
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Two theorems (Embrechts, Wang, Wang, 2014):

Theorem 1: Suppose the continuous distributions F;, i € N satisfy that for
X; ~ F;and some p € (0,1),
(i) E[|X; — IE[X-H*] is uniformly bounded for some k > 1;
(11) hﬂgf 5 Z ES

Then asd — oo,

ES,(Sa)

M =14+ O/ 1.
VaR,(S;) ( )

heorem 2: Tuke1 > q > p > 0. Suppose that the continuous distributions
Z 1 B[]
> 1E5p(K}

F;, i € N, satisfy (i) and (iii), and limsup,_, __ < 1, then

(iii) liminf fZLEbp hmmfvﬁ q(5d) — VﬂR](Sd} > 1.
oo iwoe  ES,(54) — ES,(54)




Example 2 (inhomogeneous case):

ES and VaR of §5; = X; + - - - + X;, where

@ X; ~ Pareto(2+0.11),1=1,...,5;

® X; ~Exp(i—5),i=6,...

, 10;

@ X; ~ Log-Normal(0, (0.1( — 10))%), i = 11,...,20.
d=>5 d=20
best worst spread | best worst spread
ESp 975 2248 4488 2240 | 29.15 10235 73.20
VaRpers | 979 4146 31.67 | 21.44 10065 79.21
VaRpesrs | 12.06 56.21 4416 | 22.12 126.63 104.51
VaRpes | 1296 62.01 49.05 | 22.29 136.30 114.01
e 1.08 1.02

VaRy g5




Conclusions

e Operational Risk is a very important risk class, but defies reliable
guantitative modelling

* More standardisation within the AMA/LDA is called for, do not allow for full
modelling freedom: danger of backwards engineering

* Use lower confidence levels together with regulatory defined scaling

* Split legal risk from other Operational Risk classes and decide on separate
treatment

* Make data available for scientific research
* Operational Risk type of data may lead to interesting statistical
research questions which are relevant in a wider context, like: 2



» An extreme value approach for modeling
Operational Risk losses depending on covariates

Paul Embrechts

(joint work with Valérie Chavez-Demoulin, Marius Hofert)

2015-03-23
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The people involved

V. Chavez-Demoulin M. Hofert J. Naish

= Database access granted by John Naish (Willis; naishj@willis.com)

®  |mplementation in the @ package QRM (R-Forge version 0.4-11)
= gamGPDfit (), gamGPDboot ()

®  Example based on simulated losses: demo (game)

(© 2015 Paul Embrechts | ETH Zurich


mailto:naishj@willis.com

But that would be another talk
Thank You!



Appendix: a banking example

From: Aas, K. and G. Puccetti (2014). Bounds for
total economic capital: the DNB case study.
Extremes, 17(4), 693-715



1. A real example: the DNB case. See [3].

DNB risk portfolio used for ICAAP

Ly L» L3 Ly L5 Lg
Credit Risk Market Risk Ownership Risk  Operational Risk Business Risk Insurance Risk
2.5e06 2.5e06 2.5e06 LogNormal LogNormal LogNormal
simulations simulations simulations distribution distribution distribution

ZZ’ = L;+---+4+ L; totalloss exposure (for DNB: d=6)

Basel Il(l) requirement: compute and reserve based on

VaR,, (L;,r) or ESQ(L:;)




General problem

L L, L; Ly Ls Le
Credit Risk Market Risk Ownership Risk  Operational Risk Business Risk Insurance Risk
2.5e06 2.5e06 2.5e06 LogNormal LogNormal LogNormal
simulations simulations simulations distribution distribution distribution

one period risks with statistically estimated marginals
and unknown dependence structure

DU-spread for VaR I superadditive models |

VaR (L)) Y&, VaR,(Ly) VaR, (L))

VaR, (L)) :=sup{VaR,(L; +---+ Ly):L; ~ F;,1 <i <d},
VaRa(L;;) = 1nf {V&Ra(Ll +---+Ly):L; ~ F;, 1

IA
IA
=

DU-spread for ES
e
E_SQ/(L_dl_) Z?:l ES.(L;) = E_SQ’(L;'[_)

6




How can we compute the bounds?

R ———

VaR (L) VaR,, (L))

X X
]

ES (L)) >4 ES.(L;) = ESy(LY)

X <

For general inhomogenous marginals, there does not exist an
analytical tool to compute Q

Then use the Rearrangement Algorithm;
see [3] for a step-by-step implementation.




Model uncertainty: the DNB example

DNB risk portfolio (figures in million NOK)

Ly Lr L Ly L5 Lg
Credit Risk Market Risk Ownership Risk  Operational Risk Business Risk Insurance Risk
2.5e06 2.5e06 2.5e06 LogNormal LogNormal LogNormal
simulations simulations simulations distribution distribution distribution

qguantile level used: ¥ =99.97%

62,156.4 93,152.7 105,878.2
VaR (L) Yy VaRu(Li) | VaR,(L})
ST
VaRallg)  _ 4 454

>S9 VaRa(L;)




Model uncertainty: the DNB example

DNB risk portfolio

Ly Lr L Ly Ls Lg
Credit Risk Market Risk Ownership Risk  Operational Risk Business Risk Insurance Risk
2.5e06 2.5e06 2.5e06 LogNormal LogNormal LogNormal
simulations simulations simulations distribution distribution distribution

guantile level used: ¥ =99.97%

62,156.4 93,152.7 105,878.2
|———__—|__|d —
VaR (L) MLy VaR,(Li)  VaR, (L))
74,354.7 110,588.8

-]

ES (L) ESa (L)

15
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