
Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments
over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of transactions. The
system is secure as long as honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.

1

What is needed is an electronic
payment system based on cryp-
tographic proof instead of trust,
[. . .] without the need for a
trusted third party

We propose a solution [. . .] using
a peer-to-peer distributed times-
tamp server to generate [. . .]
proof of the chronological order of
transactions

Satoshi Nakamoto. Bitcoin:
A Peer-to-Peer Electronic Cash
System. Online, bit-
coin.org/bitcoin.pdf. 2008

Daniel Augot: Transactions 1/38

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Transactions

Ledger

Proof-of-work

Politics

Scripts

Ethereum

Daniel Augot: Transactions 2/38

Transactions I
I Alice transfers bitcoins to Bob

I this is written in a public ledger

Daniel Augot: Transactions 3/38

https://blockchain.info

Transactions II
I Bob can then transfer to Carol

I Bob has to sign the new transaction, with asymmetric crypto
I simple
I combination of several inputs and outputs
I many, many outputs
I with coins to self

Daniel Augot: Transactions 4/38

https://blockchain.info/tx/6518bedf9d9fab32a654f29622ec03e4a564f6812beca53650bdea19a29b7c91
https://blockchain.info/tx/3d0619661a8602b484e2468255f788d0fb9139d86cbc5d7277350010656215c3
https://blockchain.info/tx/259591f8d5c36d13a1635b5dbdbfe70f7f71ab56fb192d27e508cbe8168de9d6
https://blockchain.info/tx/514307f33373c1e04cccf6d310079d59829ae4dc907dd18f6b0b7d4d75f90a64

Graph of transactions

All of this needs to certified, agreed upon, etc

Daniel Augot: Transactions 5/38

Blocks are chained

Daniel Augot: Ledger 6/38

Blocks and the ledger

"This book must be produced
whenever any money is deposited
or withdraw"

Rebbeca Mary Marewitt

Officer's signature
Transaction

March 27, 1869
Date stamp of the office
to be affixed against each entry

Daniel Augot: Ledger 7/38

Blocks and the ledger

"This book must be produced
whenever any money is deposited
or withdraw"

Rebbeca Mary Marewitt

Officer's signature
Transaction

March 27, 1869
Date stamp of the office
to be affixed against each entry

Bitcoin address

Public Ledger

No officer, no signature

"mining"

Daniel Augot: Ledger 8/38

Blocks are chained

Daniel Augot: Ledger 9/38

Blocks are chained and certified by a hash

hash hash hash?

Daniel Augot: Ledger 10/38

Cryptographic hash function

H :

⇢
{0, 1}⇤ ! {0, 1}256

m 7! H(m)

I deterministic algorithm
I impossible to invert, predict, etc
I should look random (random oracle)
I no secrets, no keys (neither private, public, or secret)

I it is not signature, neither encryption
I it is not signature, neither encryption
I it is not signature, neither encryption
I . . .

Daniel Augot: Proof-of-work 11/38

Cryptographic hash function

H :

⇢
any bit string ! 256 bits

m 7! H(m)

I deterministic algorithm
I impossible to invert, predict, etc
I should look random (random oracle)
I no secrets, no keys (neither private, public, or secret)

I it is not signature, neither encryption
I it is not signature, neither encryption
I it is not signature, neither encryption
I . . .

Daniel Augot: Proof-of-work 11/38

Cryptographic hash function

H :

⇢
any byte string ! 64 bytes

m 7! H(m)

I deterministic algorithm
I impossible to invert, predict, etc
I should look random (random oracle)
I no secrets, no keys (neither private, public, or secret)

I it is not signature, neither encryption
I it is not signature, neither encryption
I it is not signature, neither encryption
I . . .

Daniel Augot: Proof-of-work 11/38

Cryptographic hash function

H :

⇢
any digitalized document ! 64 bytes

m 7! H(m)

I deterministic algorithm
I impossible to invert, predict, etc
I should look random (random oracle)
I no secrets, no keys (neither private, public, or secret)

I it is not signature, neither encryption
I it is not signature, neither encryption
I it is not signature, neither encryption
I . . .

Daniel Augot: Proof-of-work 11/38

Cryptographic hash function

terminal demo
Di�cult to create, only a few are in use: SHA1, SHA256, Keccak (SHA3)

Daniel Augot: Proof-of-work 12/38

fox-dog.txt

Why such a thing would be useful
Most unsemantic function: given input x , the output h = F (x) is random!

Usage

I Ensuring file integrity: M 7! (M, h(M))
If h(M) is secure, there can be non corruption on M

I Password storage
I Play heads or tails on the phone
I Blind registration of documents

d95b82d3187458f83ad36abd509c7688f60cbda4

Daniel Augot: Proof-of-work 13/38

Mining
Mining is finding a nonce wich contributes to a partially prescribed hash

nonce = an arbitrary number used only once
Daniel Augot: Proof-of-work 14/38

Proof-of-work I
bitcoin uses SHA-2562, whose output is 256-bit

Proof of work (simplified)

I given an integer N
I to mine block-data:

UNTIL hash starts with N zero bits
nonce = next nonce
hash = SHA-256(SHA-256(block-data || nonce))

Probability for success for one iteration

P =
1

2N

No better strategy than iterating (the hash is random)

Daniel Augot: Proof-of-work 15/38

Proof-of-work II
Proof of work, with more granularity

I given a “target” T 2 [0, 2256)

I to mine block-data:
UNTIL hash < T

nonce = random value
hash = SHA-256(block-data || nonce)

Probability P for success for one interation: T
2256

Feedback
T is readjusted every 2048 blocks, to keep producing a block every 10 min

P =
1

903, 262, 006, 880, 187, 187, 200 ⇡ 2�69.6 ⇡ 10�21

Daniel Augot: Proof-of-work 16/38

Protocol summary
From Satochi’s paper

1. new transactions are broadcast to all† nodes
2. each† node collects new transactions into a block
3. each† node works on finding a di�cult proof-of-work for its block
4. when a† node finds a proof-of-work, it broadcasts the block to all

nodes
5. nodes† accept the block only if all transactions in it are valid and not

already spent
6. nodes† express their acceptance of the block by working on creating

the next block in the chain, using the hash of the accepted block as
the previous hash

block2 block5

block1 block2 block4 block5block0 Header Hash block3 block6

Daniel Augot: Proof-of-work 17/38

Rules I

Coin creation, minting
By convention, the first transaction in a block [. . .] starts a new coin
This adds an incentive for nodes to support the network [. . .]
and provides a way to distribute coins, since there is no central authority

I the first years, the reward for successful mining was 50 bitcoins
I now 12.5
I this value halves every 210,000 blocks, no new bitcoins in 2140

Fees
If the output of a transaction is less than its value, the di�erence is a
transaction fee
The incentive can transition to transaction fees [. . .]

Daniel Augot: Proof-of-work 18/38

Crypto and politics

Cryptography

I hash functions
I proof-of-work
I 51% rule: controling mining requires the majority of hash power
I electronic signature

Non crypto, neither technical, choices

I deflationnist rule for bitcoin creation
I fees
I anonymity (sort of)
I protect bitcoin, not Alice or Bob

Daniel Augot: Politics 19/38

Governance I

Levels of control

1. reference implementation: github.com/bitcoin
2. the protocol: BIP (Bitcoin Improvement Proposals)
3. the miners: they choose (the protocol of) the blocks they accept

block0 block1Header Hash

block2

block2

block3 block4 block5

block3

4. the economic power: those exchanging value for bitcoins

Forks did happen, mild for Bitcoin, severe for DarkCoin

Daniel Augot: Politics 20/38

https://github.com/bitcoin/
https://github.com/bitcoin/bips
https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448
http://thecoinfront.com/darkcoin-price-crashes-after-massive-blockchain-fork

Governance II
The block size issue (“bitcoin crisis”)

I max block size is 1 Mo (P2P performance), 7 transactions/second
I two clans: augment the block size or keep the block size fixed

The story of bitcoin-xt (Jul 2015 - Jan 2016)

1. devs could not agree
2. BIP101, still no agreement
3. accepted if 75% of last 1000 blocks are mined by bitcoin-xt

4. risk of fork, and two blockchains with incompatible bitcoin sets

block0 block1Header Hash

block2

block2

block3 block4 block5

block3 block4 block5

5. bitcoin-xt failed

Daniel Augot: Politics 21/38

Cryptocurrencies

I Litecoin another hash function
I PeerCoin proof of stake
I DarkCoin/Dash for the “DarkWeb”
I Monero advanced crypto for privacy, anonymity
I ZeroCoin zero-knowledge proofs

Goldfinger attack

I non profit, political attack, to get the majority of hash power
I Eligius mining pool destroyed CoiledCoin

Daniel Augot: Politics 22/38

http://eligius.st/~gateway
http://bitcoin.stackexchange.com/questions/3472/what-is-the-story-behind-the-attack-on-coiledcoin

No Alice and Bob, adresses

I Bob has to sign its new transation

I a wallet controls a private key, enabling to sign transactions

Daniel Augot: Scripts 23/38

Electronic signature

Verification algorithm

Key generation algorithm

Signature algorithm

owGbwMvMwCR47XPeorn
1N94zrrFKEszNz0vLTM7IT
C3SLUpNScuvCJb6+iA...

The quick brown fox jumps...

owGbwMvMwCR47XPeorn
1N94zrrFKEszNz0vLTM7IT
C3SLUpNScuvCJb6+iA...

The quick brown fox jumps...The quick brown fox jumps...

Valid/Invalid

Daniel Augot: Scripts 24/38

There are no Alice and Bob, but “adresses”

I bitcoin: no names, only hash of public keys
I users send money to hashes of public keys

Daniel Augot: Scripts 25/38

Transaction Input and Output

A transaction is the sum of an input and of an output
A programming langage is used to describe inputs and outputs

Daniel Augot: Scripts 26/38

Scripts

I the standard “output script” (FORTH-like langage)
OP DUP
OP HASH160
404371705fa9bd789a2fcd52d2c580b65d35549d
OP EQUALVERIFY
OP CHECKSIG

I the standard “redeem”script
304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e1446618c4571d10
(<Sig>)

90db022100e2ac980643b0b82c0e88�dfec6b64e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501
(<PubKey>)

Daniel Augot: Scripts 27/38

Script execution

<sig>

<pubKey>

OP_DUP

OP_HASH160

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

{

{Output
script of
previous
transaction

signature
script

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

OP_DUP

OP_HASH160

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

OP_DUP

OP_HASH160

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

OP_DUP

OP_HASH160

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

OP_HASH160

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

<pubKey>

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

<pubKeyHash>

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

pubKeyHash

OP_EQUALVERIFY

OP_CHECKSIG

<pubKeyHash>

Daniel Augot: Scripts 28/38

Script execution

<sig>

<pubKey>

OP_CHECKSIG

Daniel Augot: Scripts 28/38

Script execution

Daniel Augot: Scripts 28/38

Script execution (by the miner)

Daniel Augot: Scripts 28/38

Elaborate scripts

I Multisignature
OP 2

[A’s pubkey]

[B’s pubkey]

[C’s pubkey]

OP 3

OP CHECKMULTISIG

I “smart contracts”: escrow, micropayment channel
I pay-to-script-hash (P2SH), example

out: OP HASH160 <scriptHash> OP EQUAL

in: ..signatures... <serialized script>

Daniel Augot: Scripts 29/38

https://en.bitcoin.it/wiki/Contracts#Example_2:_Escrow_and_dispute_mediation
https://blockchain.info/address/3MbZjYS1Kjo5An9vVCwZYTd2JeobwjUsFh

Ethereum

I rapid di�usion: July 2015 (frontier), Feb. 2016 (homestead)
I white paper, yellow paper

I currency is ether
I gaining traction: ⇠ $1 billion worth of ether (https://etherchain.org)
I press coverage NY Times, 2016/03/28

“The system is complicated enough that even people who
know it well have trouble describing it in plain English”

I so let us try plain computer science language

Daniel Augot: Ethereum 30/38

https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/Paper.pdf
https://etherchain.org
http://www.nytimes.com/2016/03/28/business/dealbook/ethereum-a-virtual-currency-enables-transactions-that-rival-bitcoins.html?_r=1

Abstract bitcoin

State

404371705fa... 10

0e3d7f56b4f... 8

State

404371705fa... 7

0e3d7f56b4f... 11

Transaction

404371705fa...

sends 3 to

0e3d7f56b4f...

<Signature>

State machine

I imagine all executed bitcoin transactions have defined a state S
I a transaction defines a state transition T
I when a block pf transaction is mined, a new state S 0 is determined
I further confirmations show a consensus has emerged on S 0

Slogan: Ethereum is bitcoin with a Turing complete language

Daniel Augot: Ethereum 31/38

Ethereum model
I adresses

1. externally owned account: people, with a private key
2. contracts: programs, with no private key

I
code, storage

I transactions (sent users) transfert ether and requests to programs
I messages sent by programs

State transitions APPLY(S,T)

I if destination is an external account: transfer value to the receiver
I if the receiving account is a contract: ! run its code

Block validation

I from current state S, for each transaction T in the block, do
S APPLY(S,T)

I check the proof-of-work on the hash of the new state S
Daniel Augot: Ethereum 32/38

“The world computer”

Computer Science view

I the blockchain of ethereum is irreversible history of a memory
I data and program are stored on the blockchain
I miners execute code, modify the memory

Daniel Augot: Ethereum 33/38

Seen on forum.ethereum.org

“havo” has a question
I am a student of economics and I already got some ideas for
simple ethereum projects, however, I don’t know how to code. I
have only a little experience in python [. . .]

A 101 Noob Intro to Programming Smart Contracts on Ethereum

Daniel Augot: Ethereum 34/38

https://forum.ethereum.org/discussion/1154/which-programming-language
https://medium.com/@ConsenSys/a-101-noob-intro-to-programming-smart-contracts-on-ethereum-695d15c1dab4#.jy3v20y8q

contract FFAToken {

// The keyword "public" makes those variables

// readable from outside.

address public minter;

mapping (address => uint) public balances;

// Events allow light clients to react on

// changes efficiently.

event Sent(address from, address to, uint amount);

// This is the constructor whose code is

// run only when the contract is created.

function FFAToken() {

minter = msg.sender;

}

function mint(address receiver, uint amount) {

if (msg.sender != minter) return;

balances[receiver] += amount;

}

function send(address receiver, uint amount) {

if (balances[msg.sender] < amount) return;

balances[msg.sender] -= amount;

balances[receiver] += amount;

Sent(msg.sender, receiver, amount);

}

}

Daniel Augot: Ethereum 35/38

dapps

I etherpot.github.io on line lottery
I github.com/maran/notareth notary
I etherid.org name registrar
I weifund.io crowdfunding
I www.trustlessprivacy.com interoperable electronic health records
I cetas.github.io Decentralized KYC and Credit rating framework

a DAO is an [. . .] entity that exists as executable code on the block-chain

Daniel Augot: Ethereum 36/38

http://dapps.ethercasts.com/
http://etherpot.github.io/
https://github.com/maran/notareth
http://etherid.org/
http://weifund.io/
http://www.trustlessprivacy.com/
http://cetas.github.io/

Economics
I the blockchain of ethereum is for every one, for every application

I no need to build a blockchain with its reputation
I more applications, more money spent, more miners
I more money, the stronger the blockchain, stronger the appeal for devs

I it is a platform
I two implementation (go, C++)
I programming langages (solidity, serpent)
I development framework

Daniel Augot: Ethereum 37/38

Daniel Augot: Ethereum 38/38

	Transactions
	Ledger
	Proof-of-work
	Politics
	Scripts
	Ethereum

