THE NEW DEAL

COMMENT LA DONNÉE TRANSFORME LE MÉTIER DES ACTUAIRES ? ("CODO ERGO SUM" ?)

Data Science pour les actuaires 2^{ème} promotion 7 mars 2016 Leçon inaugurale

And then he whispered the three words every woman wants to hear... "I'm an actuary."

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

"Invariably, simple models and a lot of data trump more elaborate models based on less data"

A-t-on encore besoin d'actuaires?

BIG DATA WILL BROADEN OUR HORIZONS

New technologies and profiles

Data science is a process!

"Big Data is an economical and technological revolution...

...being defensive is a waste of time as it is unavoidable and lethal"

- Henri de Castries AXA CEO Our conviction: Big Data is an opportunity for our business, clients and society

The challenges of Big Data

> The frenzy trend of data; the 3 V's

> Still a goldmine to exploit

WE TAG AROUND 20% OF THE USEFUL DATA AND ANALYZE ONLY 5%

Sources: IBM Global Technology Outlook – 2012

http://www.progressivepolicy.org/wp-content/uploads/2013/09/09.2013-Mandel_Can-the-Internet-of-Everything-Bring-Back-the-High-Growth-Economy-1.pdf

> Internet of people: new interactions, new behaviors, new usages

- Sharing economy: usage vs. ownership
- Solomo [Social Local Mobile]: real life in real time

*Data wearesocial, August 2015

4.9 billion connected things will be in use in 2015 and will reach **25 billion** by 2020**.

**Data Gartner Inc, 2014

.. and steers the development of an algorithmic modeling culture*

> The emergence of Machine Learning: here is the age of algorithms

From static approach to more Iterative and adaptive process New kind of ecosystem

* cf. "Statistical modeling: the two cultures" of Léo Breiman

> The Data scientist definition

... and data science

> Data science is a cross-disciplinary and iterative process

Big Data world

DATA SCIENTIST

Entity Information Systems & External data sources

Illustration Telematics

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

"Invariably, simple models and a lot of data trump more elaborate models based on less data"

FEATURE ENGINEERING IS BECOMING MORE AND MORE IMPORTANT

SMART DATA AND DATA INNOVATION LAB

Presentation of DIL Telematics solution

Behind the scenes

How to tag a corner on a trip?

Initial algo:Forward States algorithm (FS) –curvatures sinuosity and angles

- → Too many false positives due to noisy GPS data. Tolerance parameters needed for adjustment
- Algo needs to be simplified, automated and more accurate
- Tracking trajectory turn the Ramer-Douglas-Peucker algorithm (RDP)
 - Introducing a tolerance parameter as the input
- RDP algorithm appears to be efficient in tagging trajectory-shaping corners

RDP-tagged datapoints on a given trajectory, for different tolerance parameters

Post processing allowed to consider the whole cornering

Post processing allowed to consider the whole cornering

- RDP algorithm tags poorly the local turns
- structure of a corner is inherently absorbed in the features of a given datapoint (GPS positions + specific features)
- Learning set: implementation of a user-friendly method to tag corners within a given trajectory
- Training of a Random Forest on tagged trajectories

Combination of a geometric algorithm and a machine learning algorithm: automation of the cornering process and accurate results

(a) False negatives for Random Forests

(b) False negatives for RDP algorithm

Telematics: Data viz

20:41:52 / 20:47:39

24 | SMART DATA AND DATA INNOVATION LAB

New ways of working to meet new challenges

Collaborative work and Backlog management

Source code management « With infrastructure as a code, systems engineers need to become developers »

ΑΝSΙΒLΕ

Business monitoring

And end-to end search & analytics platform infinitely versatile.

Completed • \$30,000 • 1,528 teams Driver Telematics Analysis Mon 15 Dec 2014 - Mon 16 Mar 2015 (6 months aeo) Dev & test and continuous integration

A revolution? You're kidding!

> Why we could (wrongly) disregard the Big Data impact?

« This isn't all that new » (TW)

→ Insurance is the only industry (with banks) to have dealt with data in recent years

« Insurers have quasi-data scientist » (TW)

- ightarrow « DS companies hires actuaries »
- → The Economist 2015 : « Google and Amazon hires micro-economist »
- « A huge proportion of big data is irrelevant » (TW)
 - \rightarrow relevance of normal data (claims,...)
 - → Data Enrichment is nevertheless one of the Strategic axis of technical excellence

"The future of data analysis"

Academic paper - John W. Tukey 1961

SO WHY THE DATA SCIENTIST HAS NOT REPLACED THE ACTUARY YET?

MAIN TECHNICAL EVOLUTIONS ACTUARIES NEED TO COPE WITH...

NEW CAPABILITIES TO HANDLE DATA

- Automatic data Extraction framework
- \rightarrow Acquisition of unstructured data
- Advanced data preparation (including complex encoding such as SDR*)
- → Advanced Feature engineering

DEVELOPMENT OF SPECIFIC MODEL IMPLEMENTATION, MONITORING AND MAINTENANCE)

- → Automatic checks of model accuracy (incl. Gini curves)
- → Technical model deployment
- \rightarrow Real time quotation & optimization
- → Training process
- → Performance monitoring (A/B testing, True Lift approach...)
- → Active learning (Contextual-Bandit approach ...)

ADVANCED MODELING APPROACH

- from cross-section data to longitudinal information (panel data)
- → Dependences could be modeled differently (GLM enriched by ML)

- Tracking of insured risks
- Dynamic ratemaking could be reviewed with direct links between the observed statistics and the proposed rates

DEVELOPMENT OF ALGORITHMIC CULTURE AND COMPUTER SCIENCE

- Predictive power and generalization vs asymptotic property
- \rightarrow Iterative and learning process
- Scalability and performance optimization (incl. production design)
- → New type of data (more diverse...)
- → Real time and better responsiveness

Data

Innovation Lab

→ Cross-validation culture

...and what will change with data science

> The biggest challenge however is assembling all this information into a coherent mode (P. Domingos*)

Innovation Lab

NEW CHALLENGES REQUIRE NEW APPROACHES FOR ACTUARIES

Scope: new playground
Tools & capabilities

Agile & cross-disciplinary approach

31 | SMART DATA AND DATA INNOVATION LAB

Connected Devices

Predictive Behavior

Risk Management Advanced Analytics

New ways of working for the actuaries

New environment and new capabilities needed

Whedooo

Spark 👌 python"

28 E

Coding!

Data science studio Non-distributed environment

Data science studios

🟓 python 🖱

Big boxes

Hadoop platform

ΗD

FS

💴 Hadoop Platform

Data exchange

with

bartners

Big Data - New questions call for new techniques *

Science

DATA SCIENTIST

Expert of Big Data and distributed environment Strong IT profile and mastering of several programming languages Business background with change management skills and analytical insights

Data-driven problem solver who tries to make discoveries from data Strong programming and modeling expertise

+ Data manager and junior data scientists

How to really become data driven?

Key challenges to really change the business means to go beyond analytics

New challenges for actuaries

Will Big Data create new insurance opportunities?

The future belongs to the companies and people that turn data into products

Mike Loukides

ACTUARY, A FUTURE BUSINESS TRANSFORMER ?

THANK YOU!

Philippe.mariejeanne@axa.com

