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. 1.3 The Haavelmo Revolution
THE ECONOMETRIC SOCIETY 14 Alternative Approaches

1.5 An Incomplete Revolution

see Duo (1997)
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Probabilistic Foundations of Econometrics

There is a probabilistic space (€2, F,P) such that data {y;,x;} can be seen as
realizations of random variables {Y;, X }.

Consider a conditional distribution for Y| X, e.g.

(Y|X = z) & N(u(zx), 0?) where u(x) = 8o + ' B, and B € RP.

for the linear model, with some extension when it is in the exponential family
(GLM).

Then use maximum likelihood for inference, to derive confidence interval

(quantification of uncertainty), etc.

Importance of unbiased estimators (Cramer Rao lower bound for the variance).
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Loss Functions

Gneiting in a statistical context: a statistics T’ is said to be ellicitable if there is
¢:R xR — R, such that

T(Y) = argmin \%NG& y)dF (y) ¢ = argmin AEEH“ V)| where Y ~ NUW

rER rER

(e.g. T(x) =7 and £ = {5, or T'(x) = median(T) and £ = /7).

In machine-learning, we want to solve
m*(x) =

using optimization techniques, in a not-too-complex space M.
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Overfit ?

Underfit: true y; = By + x| B + x4 B, + €; vs. fitted model y; = by + x| by + n;.
1P1 292 1

AN

by = (X]X1) "' X[y = B, + (X1 X)) X[ X0, +(X] X)) 'X]:

\ . \ .

TV WV
EE 5.

ie. E@L = B, + B9 # By, unless X1 L X5 (see Frish-Waugh Theorem).

Overfit: true y; = By + o1 B, + &; vs. fitted model y; = by + x{ by + xJ by + 1;.
In that case Ew: = (8, but no-longer efficient.
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Occam’s Razor and Parsimony
Importance of penalty in order to avoid a too complex model (overfit).

Consider some linear predictor, § = Hy where H = X (X "X)~'X "y, or more

generally y = Sy for some smoothing matrix S.

In econometrics, consider some ex-post penalty for model selection,
AIC = —2log L + 2p = deviance + 2p

where p is the dimension (i.e. trace(S) in a more general setting).

In machine-learning, penalty is added in the objective function, see Ridge or
LASSO regression

Amouy:@yv — @HWHH\W/:H MNA@?QO |_|8s|_..\®v |_|v,:\®:
(Bo,8) 1=1

Goodhart’s law, “when a measure becomes a target, it ceases to be a good

measure”’
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Boosting, or learning from previous errors

Construct a sequence of models

mP) (x) = m*FD(z) + o - f*(x)

where

f* = argmin Mm SAT:AS&YMARLV

few

&l

for some set of weak learner W.

Problem: where to stop to avoid overfit..
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