ACTINFO（valorisation et nouveaux usages actuariels de l＇information）
Editor of the freakonometrics．hypotheses．org＇s blog
Editor of Computational Actuarial Science，CRC
Author of Mathématiques de l＇Assurance Non－Vie（2 vol．），Economica ィечつ чวлеәsəy MSc in Financial Mathematics（Paris Dauphine）\＆ENSAE

PhD in Statistics（KU Leuven）
actuary in Hong Kong，IT \＆Stats FFA）
（previously Actuarial Sciences，UQàM \＆ENSAE Paristech
Director Data Science for Actuaries Program，Institute of Actuaries
ıOSSəfO＾d

($\left[\boldsymbol{x} \mid{ }^{\mathrm{L}} S\right]^{\boldsymbol{x}_{\mathbb{d}} \cdot \underline{H}}=[\boldsymbol{x}=\boldsymbol{X} \mid$

uo!łכnגұsuoว әчł әz!ןens!^ of үכ!ן

Insurance Pricing in a Nutshell
Premium is $\pi=\mathbb{E}_{\mathbb{P}_{\boldsymbol{X}}}\left[S_{1}\right]$
It is datadriven (or portfolio driv
ұчләло р!̣але о子 К..L

depends on the choice of meta-parameters
 with claims Кэиәпbәлы $\left\{n_{i}, \boldsymbol{x}\right.$

S! un!̣uə. ${ }_{d}$
॥ə૫słnn e u! ภu!כ!^d əכue»nsuן
전

\|
존 $\left[\boldsymbol{x}=\boldsymbol{X} \mid{ }^{?} X\right]$ 组 pur $[\boldsymbol{x}=$
This is an ex-post statement, where premiums were calculated ex-ante.
-(sumṇuə.td)

Important formula $\mathbb{E}[S]=\mathbb{E}[\mathbb{E}[S \mid \boldsymbol{X}]$ and its empirical version
әวue»nsu| u! .ภu!ィeपS yS!y

səuoz IE
N
0
0
0

0

$00 L$	$G E$	697	UUnIUUD.
$\angle 000 I$	$\% 6 \nabla$	$\angle O T G$	SUUTPTD 0
$\angle 000 I$	$\% 68$	$0 / 0 T I$	O[TOf
[P7OJ	TӘU70	4 HOS	

$\begin{gathered} {[[\mho \mid S]: \pi-S]{ }^{\text {Ie }} \Lambda} \\ 0 \\ {[\mho \mid S][\mathbb{H}-S} \end{gathered}$		әәие!̣ел ssot
..ə..nsuI	pe.msuI	

0t	$¢_{9} 9$	¢ ¢9	\%'78	¢¢9	¢ 78	${ }^{\text {тәя.r.eu }}$
${ }^{0+}$	06	$\llcorner\cdot 99$	06	08	07 L	${ }^{z} X^{\times} \times{ }^{1} X$
\& ¢ 9	${ }_{9} 6$	¢¢¢	${ }_{9} 6$	¢๕¢9	${ }_{9} 6$	${ }^{7} X$
${ }_{9} 9$	¢9	\%'78	\%'88	001	$00 \pm$	${ }^{\text {I }}$ X
$8 \% 8$	$8 \% 8$	¢'78	¢\%8	¢'78	$8 \% 8$	әиои
$0{ }_{0}$	¢ 78	L'99	¢ \%8	08	¢ 78	тәя.r.eu $^{\text {a }}$
${ }^{07}$	06	L.99	06	08	071	${ }^{z} X^{\times 1}{ }^{\text {I }} X$
¢ 78	8.78	¢'78	¢\%8	¢ 78	¢ 78	әиои
(009)	(00q)	(000't)	(000'z)	(00q)	(00¢)	
O-S	L-S	O-צ	L-®	O-X	L-X	

on individual attributes" (wikipedia)
to which the person is perceived to belong
agai

Fisher (1936)

Model Comparison (and Inequalities)

Losses (\%)

Income (\%)

（の‘Xr） 5 とumen $\quad\left({ }^{x} Y\right) d$ uossiod
$\overbrace{\left.\left(\boldsymbol{x}_{\perp} \not\right)^{\prime}\right) \mathrm{dx} \partial} \cdot \overbrace{\left(\boldsymbol{x}_{\perp} \boldsymbol{p}\right) \mathrm{dxa}}$

actinfo
freakonometrics．hypotheses．org
$\mathbb{H} \leftarrow{ }^{c} \mathcal{X}:{ }^{〔} \mathcal{A} \ni u$

Y

\square
Premium (Diesel)

Premium (Regular Gas)

Premium (Paris Region)

Premium (Car Weight < 11,000)

Premium（Car Value＜15，000）

07．98€ 86 LEE
9ㄷ 897
\＆8：68\＆

L6．729
\＆6｀97ヵ
\＆でもした
28：2LI
LL＇ZIZ
66 987
92：0It
59.8 E

79．7801
モ9：206
$89^{\prime} 778$
\＆8＇๕09
£6 $28 \angle$
26.902
$z^{\text {suI }}$
Ins3
Ins1
оృய！̣つn
\＆$\check{c}^{\circ} 997$
${ }^{\text {SuI }}$
モ9 \＆モE
$66 \cdot 98$
797801
£6： 28
［suI
L6．902
${ }^{\text {suI }}$
8¢ 688
92：0It
LL’ZIZ
モ9｀206
¡SUI

[^0]86 $2 \& \varepsilon$
07．9\＆\＆ 9．${ }^{-897}$

99888
L6‘729

モ9•\＆モ\＆
66 © 98
LL＇ZIZ
410.76

L8：LLI

$86: 28$

79．780I
モ9•206
ZSUI
［sul

ио！！！ңәdmoว sи！уешәұеу әэиелnsu｜
Ins3
$89^{\circ} 778$
¡SUI
$\in\left\{\widehat{\pi}_{1}\right.$
‘（ $\left.{ }^{?} \boldsymbol{x}\right)^{p: 1}$
步

GSUI
E8®809
9SUI

Season 323 players (3 markets, $8+8+7$) Step 3-6 [season 3] : dynamics, 4 years

Step 2 : allocate insured among players
Season 113 players
Season 214 players

Step 1 : provide premiums to all contracts in

Two datasets : a training one, and a pricing one

Actuary working for a mutuelle com-
Gender

Pricing Game in 2015

Loss Ratio (\%)

[^1]

Loss Ratio (\%)							
80	100	120	140	160	180	200	220

Market Share (\%)

Market Share (\%)				
0	10	20	30	40
	\perp	\perp	1	

MS Excel

Actuary,working as a consultant, Margin Method with iterations, MS Access \&

(ъ дәч.леш) GI ıəınsu|
 8u!כ!גd
 LIOZ U! әшеפ

（

Abstract

\equiv Forbes

Lenddo Creates Credit Scores Using Social Media Tom Groenfeldt，contreutor $\rho \rightarrow$

$$
\frac{1}{n_{k}} \sum_{i \in I_{j}}
$$

For continous covariates, set $X_{k, j}$
Privacy Issues
See General Data P
Consider a popula
areas $Z)$, with res

[^0]: Basic＇rational
 ภи！уешәұеу әכue»nsu｜

[^1]:

 ## (д дуу.ォеш) L ıəınsu|

 LIOZ u! әueg sou!!!d

