Mémoire d'actuariat

Application des méthodes de provisionnement non-vie à un portefeuille récent en développement
Auteur(s) LE MANACH Fabien
Société La Banque Postale Assurances IARD
Année 2019
Confidentiel jusqu'au 09/07/2021

Résumé
Ce mémoire a pour objectif de maîtrise le calcul des provisions à travers l'application d'un ensemble de méthodes de provisionnement déterministes et stochastiques (Chain Ladder, London Chain, Loss Ratio, Bornhuetter-Ferguson, Mack, GLM...) au portefeuille de La Banque Postale Assurances IARD et notamment à des triangles comportant des incréments négatifs. L'évaluation des provisions techniques est une tâche importante pour une compagnie d'assurance. C'est pourquoi une étude comparative sur un faisceau de méthodes a été mise en place afin de fiabiliser les estimations compte tenu de l'incertitude. En effet, la compagnie est récente, elle a seulement sept années d'ancienneté et l'historique des données sur lesquelles se baser est donc faible. Cela peut donc amener une certaine difficulté dans la modélisation ainsi que de la volatilité dans les estimations, notamment pour les garanties à déroulement long telles que l'AUTO RCC. De plus, le portefeuille étudié est en plein développement et cela se traduit notamment par une augmentation importante des montants de charges principalement lors des premières années. Ainsi nous avons un nombre limité de contrats en 2011 et 2012 pouvant générer de la volatilité et les premières années peuvent être assez différentes des années récentes d'un point de vue typologie des sinistres et des contrats. La méthode Chain Ladder est la méthode de provisionnement la plus connue et la plus utilisée, elle a l'avantage d'être simple et facilement paramétrable. Cependant, elle admet certaines limites qui peuvent être corrigées par d'autres méthodes déterministes plus élaborées telles que les méthodes London Chain, Loss Ratio simple, Bornhuetter-Ferguson ou encore Benktander. Ces méthodes restent intuitives et simples à mettre en oeuvre, néanmoins les données doivent être stables durant la période étudiée afin d'obtenir des résultats précis. Cette stabilité n'étant pas toujours respectée, l'utilisation de méthodes stochastiques afin de quantifier l'erreur liée à l'estimation des montants de provisions a été effectuée avec les méthodes de Mack, GLM et Bootstrap. Des réflexions au sujet des incréments négatifs pour la méthode Bootstrap et de l'impact de la variation de la charge en fin de triangle pour la méthode de Mack on été menée et des solutions ont alors été proposées. L'évaluation du risque à 1 an dans le cadre de Solvabilité II à l'aide de la méthode de Merz-Wüthrich ainsi que son utilisation dans le calcul du SCR de réserve ont également été traitées. Pour des raisons de confidentialité, les données présentent dans ce mémoire ont été modifiées.

Abstract
This thesis aims to control reserve calculation through the application of a set of deterministic and stochastic reserving methods (Chain Ladder, London Chain, Loss Ratio, Bornhuetter-Ferguson, Mack, GLM...) to the portfolio of La Banque Postale Assurances IARD and in particular triangles with negative increments. The valuation of technical provisions is an important task for an insurance company. This is why a comparative study on a set of methods has been put in place in order to make the estimates more reliable given the uncertainty. Indeed, the company is recent, it started off seven years ago, hence the depth of the data is limited. This can lead to some difficulty in modeling as well as volatility in estimates, especially for long-term warranties such as AUTO RCC. In addition, the portfolio studied is in full development and this results in a significant increase in the amounts of expenses mainly in the early years. Thus, we have a limited number of contracts in 2011 and 2012 that can generate volatility and the first years can be different from the recent years from a typology of claims and contracts. The Chain Ladder method is the best known and most used method of reserving, it has the advantage of being simple and easily configurable. However, it admits some limitations that can becorrected by other more elaborate deterministic methods such as London Chain methods, Simple Loss Ratio, Bornhuetter-Ferguson or Benktander. These methods are intuitive and simple to implement, but the data must be stable during the study period to obtain accurate results. As this stability is not always respected, the use of stochastic methods to quantify the error related to the estimation of the amounts of reserves was carried out with the methods of Mack, GLM and Bootstrap. Reflections on the negative increments for the Bootstrap method and the impact of the end of triangle load variation for the Mack method were made. The one-year Solvency II risk assessment using the Merz-Wüthrich method and its use in the calculation of the reserve SCR were also processed. For privacy reasons, the data in this thesis has been modified.